Core D: Monoclonal Core: (Diamond Director) This Program Project addresses the impact of antibodies to the NMDAR on adult and fetal brain. The unifying hypothesis is that antibody specificity determines the effect of the antibody on brain tissue. Project 1, 2 and 4 all utilize a panel of monoclonal anti-NMDAR antibodies. These will need to be produced in large quantity. The Monoclonal Antibody Core will produce both human and murine antibodies and will test these for preservation of antigen-binding. The Core will produce antibody at high concentration as ascites or in miniPERM apparati. The IgG will be purified on Protein G columns. The Core will generate human IgG from the immunoglobulin variable regions of selected phage or peripheral blood B cells. The Core will generate NR2A and NR2B fragments containing the extracellular amino acids for use in ELISAs. This facility will be cost-effective and will maintain quality control for 3 projects in the Program. This represents an efficient approach to the generation of reagents to be used by multiple investigators and one that maximizes the production of high quality reagents.

Agency
National Institute of Health (NIH)
Institute
National Institute of Allergy and Infectious Diseases (NIAID)
Type
Research Program Projects (P01)
Project #
5P01AI073693-05
Application #
8380690
Study Section
Special Emphasis Panel (ZAI1-KS-I)
Project Start
Project End
2014-07-31
Budget Start
2012-08-01
Budget End
2013-07-31
Support Year
5
Fiscal Year
2012
Total Cost
$202,582
Indirect Cost
$110,420
Name
Feinstein Institute for Medical Research
Department
Type
DUNS #
110565913
City
Manhasset
State
NY
Country
United States
Zip Code
11030
Huerta, Patricio T; Robbiati, Sergio; Huerta, Tomás Salvador et al. (2016) Preclinical models of overwhelming sepsis implicate the neural system that encodes contextual fear memory. Mol Med 22:
Honig, Gerard; Mader, Simone; Chen, Huiyi et al. (2016) Blood-Brain Barrier Deterioration and Hippocampal Gene Expression in Polymicrobial Sepsis: An Evaluation of Endothelial MyD88 and the Vagus Nerve. PLoS One 11:e0144215
Vingtdeux, Valérie; Chang, Eric H; Frattini, Stephen A et al. (2016) CALHM1 deficiency impairs cerebral neuron activity and memory flexibility in mice. Sci Rep 6:24250
Dhawan, Vijay; Robeson, William; Bjelke, David et al. (2015) Human Radiation Dosimetry for the N-Methyl-D-Aspartate Receptor Radioligand 11C-CNS5161. J Nucl Med 56:869-72
Huerta, Patricio T; Gibson, Elizabeth L; Rey, Carson et al. (2015) Integrative neuroscience approach to neuropsychiatric lupus. Immunol Res 63:11-7
Kowal, Czeslawa; Athanassiou, Andrew; Chen, Huiyi et al. (2015) Maternal antibodies and developing blood-brain barrier. Immunol Res 63:18-25
Chang, Eric H; Volpe, Bruce T; Mackay, Meggan et al. (2015) Selective Impairment of Spatial Cognition Caused by Autoantibodies to the N-Methyl-d-Aspartate Receptor. EBioMedicine 2:755-64
Mackay, Meggan; Tang, Chris C; Volpe, Bruce T et al. (2015) Brain metabolism and autoantibody titres predict functional impairment in systemic lupus erythematosus. Lupus Sci Med 2:e000074
Jeganathan, Venkatesh; Peeva, Elena; Diamond, Betty (2014) Hormonal milieu at time of B cell activation controls duration of autoantibody response. J Autoimmun 53:46-54
Braniste, Viorica; Al-Asmakh, Maha; Kowal, Czeslawa et al. (2014) The gut microbiota influences blood-brain barrier permeability in mice. Sci Transl Med 6:263ra158

Showing the most recent 10 out of 28 publications