- MONOCLONAL CORE This Program Project addresses the impact of antibodies cross-reactive to DNA and the NMDAR, DNRAbs, on adult brain. The hypotheses to be tested are that NMDAR subunit composition, regional penetrance of antibody into brain parenchyma and antibody concentration determines the effect of the antibody on brain tissue and function, and that these antibodies can bind to cells not protected by the blood-brain barrier and alter cell function. Projects 1 and 3 both utilize a panel of monoclonal DNRAbs. These will need to be produced in large quantity. The Monoclonal Antibody Core will produce both human and murine antibodies and will test these for preservation of antigen-binding. The Core will produce antibody at high concentration using Hollow Fiber bioreactor, ascites or in miniPERM apparati. The IgG will be purified on Protein G columns. The Core will generate NR2A and NR2B extracellular domains for use in ELISAs to confirm antibody specificity. Project 2 requires that serum be tested for DNRAb titer. The Core will provide quality control for these assays also. This facility will be cost- effective and will maintain quality control for all 3 projects in the Program. This represents an efficient approach to the generation of reagents to be used by multiple investigators and one that maximizes the production of high quality reagents. Antibodies represent a highly versatile tool in medical research. They are used in diagnostics, in basic and clinical research and in developing new therapies. The DNRAbs created in our laboratory are utilized in all of the above areas not only in our studies but in many laboratories within the United States and abroad. They are used in studies evaluating their influence on the central nervous system and peripheral tissues, in studies revealing their role in neuropsychiatric lupus and in creating new therapies in SLE. Their utilization led to important medical observations and created a new area of studies in autoimmunity and in neurology.

Public Health Relevance

- MONOCLONAL CORE This Core will provide monoclonal antibodies and assessments of antibody titer for the studies in the Program Project and for laboratories world-wide that are interested in initiating basic or clinical studies of neuropsychiatric lupus. The studies enabled by these antibodies will hasten clinical strategies for neuroprotection in patients with lupus.

Agency
National Institute of Health (NIH)
Institute
National Institute of Allergy and Infectious Diseases (NIAID)
Type
Research Program Projects (P01)
Project #
2P01AI073693-06A1
Application #
8741186
Study Section
Special Emphasis Panel (ZAI1)
Project Start
Project End
Budget Start
2014-07-03
Budget End
2015-06-30
Support Year
6
Fiscal Year
2014
Total Cost
Indirect Cost
Name
Feinstein Institute for Medical Research
Department
Type
DUNS #
City
Manhasset
State
NY
Country
United States
Zip Code
11030
Huerta, Patricio T; Robbiati, Sergio; Huerta, Tomás Salvador et al. (2016) Preclinical models of overwhelming sepsis implicate the neural system that encodes contextual fear memory. Mol Med 22:
Honig, Gerard; Mader, Simone; Chen, Huiyi et al. (2016) Blood-Brain Barrier Deterioration and Hippocampal Gene Expression in Polymicrobial Sepsis: An Evaluation of Endothelial MyD88 and the Vagus Nerve. PLoS One 11:e0144215
Vingtdeux, Valérie; Chang, Eric H; Frattini, Stephen A et al. (2016) CALHM1 deficiency impairs cerebral neuron activity and memory flexibility in mice. Sci Rep 6:24250
Dhawan, Vijay; Robeson, William; Bjelke, David et al. (2015) Human Radiation Dosimetry for the N-Methyl-D-Aspartate Receptor Radioligand 11C-CNS5161. J Nucl Med 56:869-72
Huerta, Patricio T; Gibson, Elizabeth L; Rey, Carson et al. (2015) Integrative neuroscience approach to neuropsychiatric lupus. Immunol Res 63:11-7
Kowal, Czeslawa; Athanassiou, Andrew; Chen, Huiyi et al. (2015) Maternal antibodies and developing blood-brain barrier. Immunol Res 63:18-25
Chang, Eric H; Volpe, Bruce T; Mackay, Meggan et al. (2015) Selective Impairment of Spatial Cognition Caused by Autoantibodies to the N-Methyl-d-Aspartate Receptor. EBioMedicine 2:755-64
Mackay, Meggan; Tang, Chris C; Volpe, Bruce T et al. (2015) Brain metabolism and autoantibody titres predict functional impairment in systemic lupus erythematosus. Lupus Sci Med 2:e000074
Jeganathan, Venkatesh; Peeva, Elena; Diamond, Betty (2014) Hormonal milieu at time of B cell activation controls duration of autoantibody response. J Autoimmun 53:46-54
Braniste, Viorica; Al-Asmakh, Maha; Kowal, Czeslawa et al. (2014) The gut microbiota influences blood-brain barrier permeability in mice. Sci Transl Med 6:263ra158

Showing the most recent 10 out of 28 publications