This program project application is submitted by the members of the Cleveland Immunopathogenesis Consortium (CLIC) a group of investigators representing 10 academic and research institutions in the United States and Canada who have engaged for more than three years in a coordinated research effort aimed at unraveling the mechanisms whereby HIV infection results in progressive immune deficiency. This group of experienced, outstanding investigators capitalizes on complementary research skills and resources and proposes an interdisciplinary program comprising 4 projects that are coordinated and supported by two cores: Administrative Core, charged with overall coordination and administration of the program and Specimen Acquisition Core, Alan Landay, PI, charged with assuring a sustained supply of clinical specimens of gut and lymph nodes to support project investigators. The projects comprise a series of interacting research platforms from basic laboratory research to experimental animal models to translational projects, each designed to explore the determinants and mechanisms whereby immune activation drives CD4+ T cell depletion and dysfunction in chronic HIV infection. Project #1: Bystander activation drives T cell losses in chronic HIV infection - PIs: Michael M. Lederman, M.D., Scott F. Sieg Ph.D. - Case, will test the hypothesis that increased systemic levels of microbial TLR ligands and common gamma chain cytokines in secondary lymphoid tissues drive central memory T cell activation and turnover in chronic HIV infection. Project #2: Loss of intestinal barrier function in HIV infection - Alan Levine, Ph.D. Case, will examine the integrity of the intestinal mucosa in HIV infection to document the mechanistic details underlying the enhanced translocation of microbial products through the damaged gut that we propose contributes to the pathogenesis of cell loss in chronic HIV infection. Project #3: Immune activation and AIDS pathogenesis in SIV-infected non-human primates - Guido Silvestri, M.D., Univ of Pennsylvania, will attempt to induce disease in non-pathogenic SIV infection of sooty mangabeys by activation of the innate immune system and will test whether blocking innate immune activation will attenuate disease pathogenesis in infected rhesus macaques. Project #4: Immune activation promotes PD1 expression and immune dysfunction in chronic HIV infection - Rafick Pierre Sekaly Ph.D. - Univ of Montreal, will examine the role of innate immune system activation through the interaction between HIV RNAs and TLR7/8 on the expression of PDL-1 and 2 and their effects on the function and survival of HIV reactive T cells.

Agency
National Institute of Health (NIH)
Institute
National Institute of Allergy and Infectious Diseases (NIAID)
Type
Research Program Projects (P01)
Project #
5P01AI076174-05
Application #
8303401
Study Section
Special Emphasis Panel (ZAI1-PRJ-A (J1))
Program Officer
Embry, Alan C
Project Start
2008-08-01
Project End
2014-07-31
Budget Start
2012-08-01
Budget End
2014-07-31
Support Year
5
Fiscal Year
2012
Total Cost
$1,912,693
Indirect Cost
$275,604
Name
Case Western Reserve University
Department
Internal Medicine/Medicine
Type
Schools of Medicine
DUNS #
077758407
City
Cleveland
State
OH
Country
United States
Zip Code
44106
Luo, Zhenwu; Ma, Lei; Zhang, Lumin et al. (2016) Key differences in B cell activation patterns and immune correlates among treated HIV-infected patients versus healthy controls following influenza vaccination. Vaccine 34:1945-55
Shive, Carey L; Clagett, Brian; McCausland, Marie R et al. (2016) Inflammation Perturbs the IL-7 Axis, Promoting Senescence and Exhaustion that Broadly Characterize Immune Failure in Treated HIV Infection. J Acquir Immune Defic Syndr 71:483-92
Panigrahi, Soumya; Freeman, Michael L; Funderburg, Nicholas T et al. (2016) SIV/SHIV Infection Triggers Vascular Inflammation, Diminished Expression of Krüppel-like Factor 2 and Endothelial Dysfunction. J Infect Dis 213:1419-27
McGinty, Tara; Mirmonsef, Paria; Mallon, Patrick W G et al. (2016) Does systemic inflammation and immune activation contribute to fracture risk in HIV? Curr Opin HIV AIDS 11:253-60
Siedner, Mark J; Kim, June-Ho; Nakku, Ruth Sentongo et al. (2016) HIV infection and arterial stiffness among older-adults taking antiretroviral therapy in rural Uganda. AIDS 30:667-70
Pandiyan, Pushpa; Younes, Souheil-Antoine; Ribeiro, Susan Pereira et al. (2016) Mucosal Regulatory T Cells and T Helper 17 Cells in HIV-Associated Immune Activation. Front Immunol 7:228
Siedner, Mark J; Kim, June-Ho; Nakku, Ruth Sentongo et al. (2016) Persistent Immune Activation and Carotid Atherosclerosis in HIV-Infected Ugandans Receiving Antiretroviral Therapy. J Infect Dis 213:370-8
Fu, P; Hughes, J; Zeng, G et al. (2016) A comparative investigation of methods for longitudinal data with limits of detection through a case study. Stat Methods Med Res 25:153-66
Mudd, Joseph C; Panigrahi, Soumya; Kyi, Benjamin et al. (2016) Inflammatory Function of CX3CR1+ CD8+ T Cells in Treated HIV Infection Is Modulated by Platelet Interactions. J Infect Dis 214:1808-1816
Lee, Sulggi A; Mefford, Joel A; Huang, Yong et al. (2016) Host genetic predictors of the kynurenine pathway of tryptophan catabolism among treated HIV-infected Ugandans. AIDS 30:1807-15

Showing the most recent 10 out of 87 publications