Omenn syndrome (OS) is a combined immunodeficiency characterized by severe tissue damage due to infiltrating, activated, oligoclonal and anergic T lymphocytes. Most patients with OS lack circulating B lymphocytes and show profound hypogammaglobulinemia, but normal or elevated serum IgE. We have found that most patients with OS carry hypomorphic mutations of the RAG genes that decrease but do not abolish V(D)J recombination. However, hypomorphic mutations in genes involved in V(D)J recombination may also cause leaky SCID, with accumulation of activated and anergic T cells, without tissue damage. We have found that the transcription factor Aire and tissue-specific transcripts are poorly expressed in the thymus of patients with OS, raising the possibility that negative selection of autoreactive T cells may not be properly in place. In addition, development of regulatory T cells (Tregs) is likely to be altered in OS, as the thymus of these patients lacks Hassall's corpuscles, which are involved in Tregs development. Finally, environmental factors may also be involved in the pathophysiology of OS, as it has been shown that the disease phenotype in infants with hypomorphic RAG mutations can be dramatically modified by exposure to pathogens. We will take advantage of three recently developed murine models of hypomorphic rag2, ragl, and Iig4 mutations to investigate the cellular and molecular mechanisms that underlie OS and leaky SCID. Our overall hypothesis is that the variable clinical and immunological phenotype associated with hypomorphic mutations in genes involved in V(D)J recombination reflects a different degree of impairment of V(D)J recombination that affects deletional and non deletional mechanisms of central tolerance, and that the resulting phenotype may be modified by environmental factors. To test this hypothesis,we will evaluate the V(D)J recombination activity of the mutants. We will analyze negative selection in these models, and use adoptive transfer to assess the role of impaired function of Tregs. Finally, we will challenge the mice with TLR agonists, MCMV and oxazolone to precipitate or accelerate the disease phenotype. We expect that detailed characterization of these unique animal models will provide critical information to understand the pathophysiology of OS and leaky SCID, but also of other, more common, disorders of immune regulation. The information that will be collected might be useful also for development of novel and more appropriate forms of treatment of these severe conditions of immune deficiency and dysreactivity.

Agency
National Institute of Health (NIH)
Institute
National Institute of Allergy and Infectious Diseases (NIAID)
Type
Research Program Projects (P01)
Project #
5P01AI076210-04
Application #
8376594
Study Section
Special Emphasis Panel (ZAI1-PA-I)
Project Start
Project End
Budget Start
2012-07-01
Budget End
2013-06-30
Support Year
4
Fiscal Year
2012
Total Cost
$493,639
Indirect Cost
$55,799
Name
Beth Israel Deaconess Medical Center
Department
Type
DUNS #
071723621
City
Boston
State
MA
Country
United States
Zip Code
02215
Xing, Mengtan; Bjørås, Magnar; Daniel, Jeremy A et al. (2017) Synthetic lethality between murine DNA repair factors XLF and DNA-PKcs is rescued by inactivation of Ku70. DNA Repair (Amst) 57:133-138
Kumánovics, Attila; Lee, Yu Nee; Close, Devin W et al. (2017) Estimated disease incidence of RAG1/2 mutations: A case report and querying the Exome Aggregation Consortium. J Allergy Clin Immunol 139:690-692.e3
Yee, Christina S; Massaad, Michel J; Bainter, Wayne et al. (2016) Recurrent viral infections associated with a homozygous CORO1A mutation that disrupts oligomerization and cytoskeletal association. J Allergy Clin Immunol 137:879-88.e2
Badran, Yousef R; Massaad, Michel J; Bainter, Wayne et al. (2016) Combined immunodeficiency due to a homozygous mutation in ORAI1 that deletes the C-terminus that interacts with STIM 1. Clin Immunol 166-167:100-2
Jabara, Haifa H; Boyden, Steven E; Chou, Janet et al. (2016) A missense mutation in TFRC, encoding transferrin receptor 1, causes combined immunodeficiency. Nat Genet 48:74-8
Felgentreff, Kerstin; Lee, Yu Nee; Frugoni, Francesco et al. (2015) Functional analysis of naturally occurring DCLRE1C mutations and correlation with the clinical phenotype of ARTEMIS deficiency. J Allergy Clin Immunol 136:140-150.e7
Buchbinder, David; Baker, Rebecca; Lee, Yu Nee et al. (2015) Identification of patients with RAG mutations previously diagnosed with common variable immunodeficiency disorders. J Clin Immunol 35:119-24
Chou, Janet; Badran, Yousef R; Yee, Christina S K et al. (2015) A novel mutation in ORAI1 presenting with combined immunodeficiency and residual T-cell function. J Allergy Clin Immunol 136:479-482.e1
Walter, Jolan E; Lo, Mindy S; Kis-Toth, Katalin et al. (2015) Impaired receptor editing and heterozygous RAG2 mutation in a patient with systemic lupus erythematosus and erosive arthritis. J Allergy Clin Immunol 135:272-3
Boisson, Bertrand; Laplantine, Emmanuel; Dobbs, Kerry et al. (2015) Human HOIP and LUBAC deficiency underlies autoinflammation, immunodeficiency, amylopectinosis, and lymphangiectasia. J Exp Med 212:939-51

Showing the most recent 10 out of 59 publications