X-linked lymphoproliferative syndrome (XLP) is characterized by three prevalent phenotypes: 1) Fulminant Infectious Mononucleosis, 2) malignant B cell lymphoma and 3) acquired hypogammaglobulinema in the absence of infectious mononucleosis. As the three major phenotypes of XLP are found within one family harboring the same mutation, genetic background and/or environmental factors must play a role in the pathogenesis of the disease. FIM patients mount a vigorous, uncontrolled polyclonal expansion of T and B cells, inevitably leading to death by hepatic necrosis and bone marrow failure. A major cause of XLP in humans is a defect in the SH2D1A gene, which encodes SAP (SLAM Associated Protein), a single free SH2- domain protein that controls distinct key signal transduction pathways in CD4 and CDS T lymphocytes, NK cells, platelets and probably a subset of B cells. SAP functions as an adapter, which bridges the cytoplasmic tail of six members of the SLAM receptor family to signal transduction pathways, e.g. Fyn and other tyrosine kinases. Previous studies show that several arms of the acquired immune responses are affected in XLP patients and SAP-deficient mice and that the SAP related molecules EAT-2A and -2B subserve similar functions. Our general hypothesis is that SAP and EAT-2A/B control partially overlapping mechanisms that are critical for the control of humoral immunity. The experiments proposed in this application will test the hypothesis that #1) distinct SAP-/- CD4+ T cell subsets and/or NKT cells contribute to the dysgammaglobulinemia of SAP-/- mice, #2) disruption of the SAP gene affects the subsets of follicular B cells, which participate in humoral responses and in the germinal center reaction and #3) EAT-2A/B and SAP interact in the control of antibody responses. Together these experiments should clarify the role of SAP and EAT-2 in T cell dependent B cell responses and why the absence of SAP functions causes dys-gammaglobulinemia. The results of these studies should suggest therapeutic strategies that can be applied to XLP patients.

National Institute of Health (NIH)
National Institute of Allergy and Infectious Diseases (NIAID)
Research Program Projects (P01)
Project #
Application #
Study Section
Special Emphasis Panel (ZAI1-PA-I)
Project Start
Project End
Budget Start
Budget End
Support Year
Fiscal Year
Total Cost
Indirect Cost
Beth Israel Deaconess Medical Center
United States
Zip Code
Hoyos-Bachiloglu, Rodrigo; Chou, Janet; Sodroski, Catherine N et al. (2017) A digenic human immunodeficiency characterized by IFNAR1 and IFNGR2 mutations. J Clin Invest 127:4415-4420
Jabara, Haifa H; Lee, John J; Janssen, Erin et al. (2017) Heterozygosity for transmembrane activator and calcium modulator ligand interactor A144E causes haploinsufficiency and pneumococcal susceptibility in mice. J Allergy Clin Immunol 139:1293-1301.e4
Xing, Mengtan; Bjørås, Magnar; Daniel, Jeremy A et al. (2017) Synthetic lethality between murine DNA repair factors XLF and DNA-PKcs is rescued by inactivation of Ku70. DNA Repair (Amst) 57:133-138
Yee, Christina S; Massaad, Michel J; Bainter, Wayne et al. (2016) Recurrent viral infections associated with a homozygous CORO1A mutation that disrupts oligomerization and cytoskeletal association. J Allergy Clin Immunol 137:879-88.e2
Badran, Yousef R; Massaad, Michel J; Bainter, Wayne et al. (2016) Combined immunodeficiency due to a homozygous mutation in ORAI1 that deletes the C-terminus that interacts with STIM 1. Clin Immunol 166-167:100-2
Jabara, Haifa H; Boyden, Steven E; Chou, Janet et al. (2016) A missense mutation in TFRC, encoding transferrin receptor 1, causes combined immunodeficiency. Nat Genet 48:74-8
Felgentreff, Kerstin; Lee, Yu Nee; Frugoni, Francesco et al. (2015) Functional analysis of naturally occurring DCLRE1C mutations and correlation with the clinical phenotype of ARTEMIS deficiency. J Allergy Clin Immunol 136:140-150.e7
Buchbinder, David; Baker, Rebecca; Lee, Yu Nee et al. (2015) Identification of patients with RAG mutations previously diagnosed with common variable immunodeficiency disorders. J Clin Immunol 35:119-24
Chou, Janet; Badran, Yousef R; Yee, Christina S K et al. (2015) A novel mutation in ORAI1 presenting with combined immunodeficiency and residual T-cell function. J Allergy Clin Immunol 136:479-482.e1
Boisson, Bertrand; Laplantine, Emmanuel; Dobbs, Kerry et al. (2015) Human HOIP and LUBAC deficiency underlies autoinflammation, immunodeficiency, amylopectinosis, and lymphangiectasia. J Exp Med 212:939-51

Showing the most recent 10 out of 60 publications