HIV-1 R5 viruses vary considerably in phenotypes, including macrophage-tropism and sensitivity to neutralizing antibodies. Thus, highly mac-tropic envelopes (envs) exploit low amounts of CD4 and/or CCR5 for infection and contrast with non-mac-tropic R5 envs that require high CD4 levels and infect macrophages inefficiently. The capacity of highly mac-tropic envs to use low CD4/CCR5 suggests that such variants may confer a broader tropism among other CD4+ cell types that express low receptor levels and may have an advantage during virus transmission. Our recent data, using neutralizing monoclonal antibodies and entry inhibitors, strongly suggests that highly mac-tropic R5 envs carry a more exposed CD4 binding site (CD4bs) and may be vulnerable to neutralizing antibodies (nabs) induced by vaccines. We propose to extensively investigate tropism and neutralization sensitivity of diverse R5 envs in the following four aims:
Aim 1. The effect of HIV-1 R5 macrophage-tropism on infection of different CD4+ cell populations. We will examine whether highly mac-tropic R5 envelopes confer a broader tropism among CD4+ T-cell populations.
Aim 2. Further analysis of the envelope determinants for macrophage infection and use of low CD4 in clade B and non-clade B envelopes. We will analyze clade B and non-clade B envs to identify determinants of tropism and to further examine the role of the CD4 binding loop.
Aim 3. Investigation of the impact of R5 env variation in macrophage-tropism on sensitivity to neutralizing antibodies. We will investigate how R5 env variation impacts on sensitivity to HIV-1+ human sera, neutralizing mabs and vaccine induced neutralizing antibodies.
Aim 4. Development and characterization of bacterially-produced, unglycosylated protein constructs that mimic the CD4bs. We have designed and produced CD4bs mimics that carry the critical elements of the CD4bs in an unglycosylated peptide that can be produced in bacteria. These CD4bs mimics bind CD4 and b12. Their structure and capacity to induce neutralizing antibodies will be investigated. We expect to provide important insights into (1) the variation of R5 envs for tropism and neutralization sensitivity, (2) the env amino acids and structural determinants involved in varying tropism and neutralization sensitivity and (3) the impact of this variation in the design of novel env-based vaccines.

Public Health Relevance

Our application proposes an extensive investigation into how HIV-1 viruses that transmit vary in their biological properties. Our data will guide us in the development of novel vaccines designed to elicit protection against global HIV-1.

National Institute of Health (NIH)
National Institute of Allergy and Infectious Diseases (NIAID)
Research Program Projects (P01)
Project #
Application #
Study Section
Special Emphasis Panel (ZAI1-EC-A)
Project Start
Project End
Budget Start
Budget End
Support Year
Fiscal Year
Total Cost
Indirect Cost
University of Massachusetts Medical School Worcester
United States
Zip Code
Suschak, John J; Wang, Shixia; Fitzgerald, Katherine A et al. (2015) Identification of Aim2 as a sensor for DNA vaccines. J Immunol 194:630-6
Pouliot, Kimberly; Buglione-Corbett, Rachel; Marty-Roix, Robyn et al. (2014) Contribution of TLR4 and MyD88 for adjuvant monophosphoryl lipid A (MPLA) activity in a DNA prime-protein boost HIV-1 vaccine. Vaccine 32:5049-56
Chen, Yuxin; Vaine, Michael; Wallace, Aaron et al. (2013) A novel rabbit monoclonal antibody platform to dissect the diverse repertoire of antibody epitopes for HIV-1 Env immunogen design. J Virol 87:10232-43
Buglione-Corbett, Rachel; Pouliot, Kimberly; Marty-Roix, Robyn et al. (2013) Serum cytokine profiles associated with specific adjuvants used in a DNA prime-protein boost vaccination strategy. PLoS One 8:e74820
Pan, Ruimin; Sampson, Jared M; Chen, Yuxin et al. (2013) Rabbit anti-HIV-1 monoclonal antibodies raised by immunization can mimic the antigen-binding modes of antibodies derived from HIV-1-infected humans. J Virol 87:10221-31
Murphy, Megan K; Yue, Ling; Pan, Ruimin et al. (2013) Viral escape from neutralizing antibodies in early subtype A HIV-1 infection drives an increase in autologous neutralization breadth. PLoS Pathog 9:e1003173
O'Connell, Olivia; Repik, Alexander; Reeves, Jacqueline D et al. (2013) Efficiency of bridging-sheet recruitment explains HIV-1 R5 envelope glycoprotein sensitivity to soluble CD4 and macrophage tropism. J Virol 87:187-98
Peters, Paul J; Richards, Kathryn; Clapham, Paul (2013) Human immunodeficiency viruses: propagation, quantification, and storage. Curr Protoc Microbiol Chapter 15:Unit 15J.1
Gonzalez-Perez, Maria Paz; O'Connell, Olivia; Lin, Rongheng et al. (2012) Independent evolution of macrophage-tropism and increased charge between HIV-1 R5 envelopes present in brain and immune tissue. Retrovirology 9:20
Duenas-Decamp, Maria J; O'Connell, Olivia J; Corti, Davide et al. (2012) The W100 pocket on HIV-1 gp120 penetrated by b12 is not a target for other CD4bs monoclonal antibodies. Retrovirology 9:9

Showing the most recent 10 out of 22 publications