Staphylococcus aureus has historically been a leading cause of nosocomial infections in humans worldwide. In the past several decades the emergence of methicillin-resistant S. aureus (MRSA) harboring multiple antibiotic resistance determinants has left relatively few therapeutic options available. Today, these strains have made their way into the community and now pose a very serious public health threat, causing more deaths per year than HIV-AIDS. The University of Nebraska Medical Center has committed to advancing research into the staphylococci with the hiring of several new researchers, and the concerted collaboration with regional investigators, who are all focused on this important pathogen. These researchers have expertise in varied aspects of the staphylococci including: biofilm development, gene regulation, physiology, and the immunology of staphylococcal infections. The hypothesis to be tested by this team in this application is that S. aureus biofilm formation involves complex developmental processes that affect the host immune response. The application includes four projects centered around staphylococcal biofilm and disease including: regulated cell death during biofilm development (Project 1, K. Bayles);effect of arginine metabolism on biofilm formation in the staphylococci (Project 2, P. Fey);the role of nuclease in biofilm development and disease (Project 3, A. Horswill);and innate immunity to S. aureus biofilm (Project 4, T. Kielian). The cores include: Biofilm Growth and Analysis Core (Core A, J. Bose);Bioimaging Core (Core B, T. Fritz);and Administrative Core (Core C, K. Bayles). Each project involves highly collaborative and synergistic research endeavors and relies heavily on the cores. These efforts will have a dramatic impact on our understanding of biofilm formation in the staphylococci and the effect it has on the host response. Ultimately, these studies will pave the way for novel therapeutic approaches for the treatment of staphylococcal infections.

National Institute of Health (NIH)
National Institute of Allergy and Infectious Diseases (NIAID)
Research Program Projects (P01)
Project #
Application #
Study Section
Special Emphasis Panel (ZAI1-TS-M (M1))
Program Officer
Huntley, Clayton C
Project Start
Project End
Budget Start
Budget End
Support Year
Fiscal Year
Total Cost
Indirect Cost
University of Nebraska Medical Center
Schools of Medicine
United States
Zip Code
Lehman, McKenzie K; Bose, Jeffrey L; Sharma-Kuinkel, Batu K et al. (2015) Identification of the amino acids essential for LytSR-mediated signal transduction in Staphylococcus aureus and their roles in biofilm-specific gene expression. Mol Microbiol 95:723-37
Hanamsagar, Richa; Aldrich, Amy; Kielian, Tammy (2014) Critical role for the AIM2 inflammasome during acute CNS bacterial infection. J Neurochem 129:704-11
Scherr, Tyler D; Lindgren, Kevin E; Schaeffer, Carolyn R et al. (2014) Mouse model of post-arthroplasty Staphylococcus epidermidis joint infection. Methods Mol Biol 1106:173-81
Heim, Cortney E; Vidlak, Debbie; Scherr, Tyler D et al. (2014) Myeloid-derived suppressor cells contribute to Staphylococcus aureus orthopedic biofilm infection. J Immunol 192:3778-92
Hernandez, Frank J; Huang, Lingyan; Olson, Michael E et al. (2014) Noninvasive imaging of Staphylococcus aureus infections with a nuclease-activated probe. Nat Med 20:301-6
Zurek, Oliwia W; Nygaard, Tyler K; Watkins, Robert L et al. (2014) The role of innate immunity in promoting SaeR/S-mediated virulence in Staphylococcus aureus. J Innate Immun 6:21-30
Kiedrowski, Megan R; Crosby, Heidi A; Hernandez, Frank J et al. (2014) Staphylococcus aureus Nuc2 is a functional, surface-attached extracellular nuclease. PLoS One 9:e95574
Sapp, April M; Mogen, Austin B; Almand, Erin A et al. (2014) Contribution of the nos-pdt operon to virulence phenotypes in methicillin-sensitive Staphylococcus aureus. PLoS One 9:e108868
Olson, Michael E; Todd, Daniel A; Schaeffer, Carolyn R et al. (2014) Staphylococcus epidermidis agr quorum-sensing system: signal identification, cross talk, and importance in colonization. J Bacteriol 196:3482-93
Lindgren, J K; Thomas, V C; Olson, M E et al. (2014) Arginine deiminase in Staphylococcus epidermidis functions to augment biofilm maturation through pH homeostasis. J Bacteriol 196:2277-89

Showing the most recent 10 out of 48 publications