Staphylococcus aureus has historically been a leading cause of nosocomial infections in humans worldwide. In the past several decades the emergence of methicillin-resistant S. aureus (MRSA) harboring multiple antibiotic resistance determinants has left relatively few therapeutic options available. Today, these strains have made their way into the community and now pose a very serious public health threat, causing more deaths per year than HIV-AIDS. The University of Nebraska Medical Center has committed to advancing research into the staphylococci with the hiring of several new researchers, and the concerted collaboration with regional investigators, who are all focused on this important pathogen. These researchers have expertise in varied aspects of the staphylococci including: biofilm development, gene regulation, physiology, and the immunology of staphylococcal infections. The hypothesis to be tested by this team in this application is that S. aureus biofilm formation involves complex developmental processes that affect the host immune response. The application includes four projects centered around staphylococcal biofilm and disease including: regulated cell death during biofilm development (Project 1, K. Bayles);effect of arginine metabolism on biofilm formation in the staphylococci (Project 2, P. Fey);the role of nuclease in biofilm development and disease (Project 3, A. Horswill);and innate immunity to S. aureus biofilm (Project 4, T. Kielian). The cores include: Biofilm Growth and Analysis Core (Core A, J. Bose);Bioimaging Core (Core B, T. Fritz);and Administrative Core (Core C, K. Bayles). Each project involves highly collaborative and synergistic research endeavors and relies heavily on the cores. These efforts will have a dramatic impact on our understanding of biofilm formation in the staphylococci and the effect it has on the host response. Ultimately, these studies will pave the way for novel therapeutic approaches for the treatment of staphylococcal infections.

Agency
National Institute of Health (NIH)
Institute
National Institute of Allergy and Infectious Diseases (NIAID)
Type
Research Program Projects (P01)
Project #
5P01AI083211-04
Application #
8292126
Study Section
Special Emphasis Panel (ZAI1-TS-M (M1))
Program Officer
Huntley, Clayton C
Project Start
2009-07-01
Project End
2014-06-30
Budget Start
2012-07-01
Budget End
2013-06-30
Support Year
4
Fiscal Year
2012
Total Cost
$1,946,275
Indirect Cost
$534,709
Name
University of Nebraska Medical Center
Department
Pathology
Type
Schools of Medicine
DUNS #
168559177
City
Omaha
State
NE
Country
United States
Zip Code
68198
Ibberson, Carolyn B; Parlet, Corey P; Kwiecinski, Jakub et al. (2016) Hyaluronan Modulation Impacts Staphylococcus aureus Biofilm Infection. Infect Immun 84:1917-29
Marshall, Darrell D; Sadykov, Marat R; Thomas, Vinai C et al. (2016) Redox Imbalance Underlies the Fitness Defect Associated with Inactivation of the Pta-AckA Pathway in Staphylococcus aureus. J Proteome Res 15:1205-12
Kavanaugh, Jeffrey S; Horswill, Alexander R (2016) Impact of Environmental Cues on Staphylococcal Quorum Sensing and Biofilm Development. J Biol Chem 291:12556-64
Gries, Casey M; Sadykov, Marat R; Bulock, Logan L et al. (2016) Potassium Uptake Modulates Staphylococcus aureus Metabolism. mSphere 1:
Windham, Ian H; Chaudhari, Sujata S; Bose, Jeffrey L et al. (2016) SrrAB Modulates Staphylococcus aureus Cell Death through Regulation of cidABC Transcription. J Bacteriol 198:1114-22
Chaudhari, Sujata S; Thomas, Vinai C; Sadykov, Marat R et al. (2016) The LysR-type transcriptional regulator, CidR, regulates stationary phase cell death in Staphylococcus aureus. Mol Microbiol 101:942-53
Vidlak, Debbie; Kielian, Tammy (2016) Infectious Dose Dictates the Host Response during Staphylococcus aureus Orthopedic-Implant Biofilm Infection. Infect Immun 84:1957-65
Paharik, Alexandra E; Horswill, Alexander R (2016) The Staphylococcal Biofilm: Adhesins, Regulation, and Host Response. Microbiol Spectr 4:
Schaeffer, Carolyn R; Hoang, Tra-My N; Sudbeck, Craig M et al. (2016) Versatility of Biofilm Matrix Molecules in Staphylococcus epidermidis Clinical Isolates and Importance of Polysaccharide Intercellular Adhesin Expression during High Shear Stress. mSphere 1:
Lewis, April M; Rice, Kelly C (2016) Quantitative Real-Time PCR (qPCR) Workflow for Analyzing Staphylococcus aureus Gene Expression. Methods Mol Biol 1373:143-54

Showing the most recent 10 out of 89 publications