The Histopathology Core will provide integral support for all 3 projects. This core will centralize the pathology resources for all of the projects of the PPG. This will result in cost savings, increased quality control and maximal comparability between the results of the projects. Key functions of the Core include: 1) expert advise in immunohistological aspects of experimental design to optimize results;2) uniform tissue processing;3) tissue sectioning (frozen sections and paraffin-embedded sections);4) histochemical and immunohistochemical staining of tissue sections;5) pathological interpretation of tissue sections;6) documentation of the pathology by high quality digital microscopic photography;7) preparation of figures for manuscripts;8) storage and retrieval of stained slides for each of the projects. In addition, this Core will be responsible for ordering, quality assurance and control studies of all antibodies and reagents for use in the pathology methods. New reagents will be developed and evaluated as requested by investigators in the 3 projects.

Agency
National Institute of Health (NIH)
Institute
National Institute of Allergy and Infectious Diseases (NIAID)
Type
Research Program Projects (P01)
Project #
5P01AI087586-05
Application #
8664786
Study Section
Special Emphasis Panel (ZAI1)
Project Start
Project End
Budget Start
2014-06-01
Budget End
2015-05-31
Support Year
5
Fiscal Year
2014
Total Cost
Indirect Cost
Name
Cleveland Clinic Lerner
Department
Type
DUNS #
City
Cleveland
State
OH
Country
United States
Zip Code
44195
Baldwin 3rd, William M; Valujskikh, Anna; Fairchild, Robert L (2016) Mechanisms of antibody-mediated acute and chronic rejection of kidney allografts. Curr Opin Organ Transplant 21:7-14
Gorbacheva, Victoria; Fan, Ran; Fairchild, Robert L et al. (2016) Memory CD4 T Cells Induce Antibody-Mediated Rejection of Renal Allografts. J Am Soc Nephrol 27:3299-3307
Kohei, Naoki; Tanaka, Toshiaki; Tanabe, Kazunari et al. (2016) Natural killer cells play a critical role in mediating inflammation and graft failure during antibody-mediated rejection of kidney allografts. Kidney Int 89:1293-306
Iida, Shoichi; Tsuda, Hidetoshi; Tanaka, Toshiaki et al. (2016) IL-1 Receptor Signaling on Graft Parenchymal Cells Regulates Memory and De Novo Donor-Reactive CD8 T Cell Responses to Cardiac Allografts. J Immunol 196:2827-37
Baldwin 3rd, W M; Morelli, A E (2016) Strategically Altering the Balance of Macrophage Subpopulations to Inhibit Chronic Rejection. Am J Transplant 16:2510-1
Ayasoufi, Katayoun; Fan, Ran; Fairchild, Robert L et al. (2016) CD4 T Cell Help via B Cells Is Required for Lymphopenia-Induced CD8 T Cell Proliferation. J Immunol 196:3180-90
Gorbacheva, V; Ayasoufi, K; Fan, R et al. (2015) B cell activating factor (BAFF) and a proliferation inducing ligand (APRIL) mediate CD40-independent help by memory CD4 T cells. Am J Transplant 15:346-57
Kuo, Hsiao-Hsuan; Fan, Ran; Dvorina, Nina et al. (2015) Platelets in early antibody-mediated rejection of renal transplants. J Am Soc Nephrol 26:855-63
Valujskikh, Anna N (2015) B cells regulate antidonor T-cell reactivity in transplantation. Kidney Int 88:444-6
Gorbacheva, Victoria; Fan, Ran; Wang, Xi et al. (2015) IFN-γ production by memory helper T cells is required for CD40-independent alloantibody responses. J Immunol 194:1347-56

Showing the most recent 10 out of 35 publications