The overall objective of Project 4 is to assess the relationship between exposure to pets, the infant home and gut microbiomes, and allergic asthma at 9 years of age, using an ethnically diverse, population-based general risk birth cohort (the WHEALS cohort). A premise with growing evidence is that lack of exposure to particular patterns of microbial stimuli during early infancy results in a heightened T-helper (Th) 2 response in the maturing immune system, likely due to a suboptimal regulatory capacity, which in turn is associated in childhood with increased immunoglobulin(lg)E, allergy, and clinical allergic conditions such as asthma. Epidemiological studies have revealed that atopic conditions have increased over the latter half of the twentieth century. Humans in earlier centuries had lifestyles associated with closer direct contact with soil, animals and other humans, suggesting exposure to environments with richer and more diverse microbiological burdens. We hypothesize that evolutionary adaptation to such microbial exposures with respect to immune recognition and regulation may result in untoward consequences when humans are presented with the different, and probably more limited, patterns of microbial exposures found in modern Westernized societies. Our theory is that in many settings, pets, as well as farm animals in close proximity, render the home microbiome, or bacterial community composition (BCC,) to be more similar to early 20th century environments with respect to an increased bacterial richness, diversity and a more even distribution of taxa. This home microbiome impacts directly through effects on the infant gastrointestinal tract BCC the immunogenesis of the infant and subsequently the development of clinically important outcomes such as childhood atopic asthma. Using a new technology (the G3 PhyloChipj, capable of cost-effectively identifying, to a great depth, bacteria in environmental and biological samples, our collaborative team has preliminary data suggesting that the presence of dogs and cats is associated with distinct home and infant gut microbiomes characterized by dramatic increases in bacterial diversity, richness and evenness. Using newly measured outcome variables measured by questionnaire and clinical examinations in the WHEALS cohort, in conjunction with PhyloChip analyses of stored infant stool and dust samples, we will test whether distinct patterns of pet exposure, home microbiome and infant gut microbiome are associated with current allergic asthma at age 9 years.

Public Health Relevance

We hypothesize that in many settings, household pets render the home microbial ecology to be more similar to pre-20th century environments, which may account for their protective effect on risk for childhood asthma. If certain parts of the environment are found to decrease the risk for asthma, public health interventions could be developed, such as safe medications for infants, that mimic these environmental exposure patterns.

Agency
National Institute of Health (NIH)
Institute
National Institute of Allergy and Infectious Diseases (NIAID)
Type
Research Program Projects (P01)
Project #
5P01AI089473-02
Application #
8567839
Study Section
Special Emphasis Panel (ZAI1-JRR-I)
Project Start
Project End
Budget Start
2013-07-01
Budget End
2014-06-30
Support Year
2
Fiscal Year
2013
Total Cost
$228,357
Indirect Cost
$41,719
Name
Henry Ford Health System
Department
Type
DUNS #
073134603
City
Detroit
State
MI
Country
United States
Zip Code
48202
Cassidy-Bushrow, Andrea E; Wegienka, Ganesa; Havstad, Suzanne et al. (2016) Race-specific Association of Caesarean-Section Delivery with Body Size at Age 2 Years. Ethn Dis 26:61-8
Cassidy-Bushrow, Andrea E; Havstad, Suzanne; Basu, Niladri et al. (2016) Detectable Blood Lead Level and Body Size in Early Childhood. Biol Trace Elem Res 171:41-7
Mar, Jordan S; LaMere, Brandon J; Lin, Din L et al. (2016) Disease Severity and Immune Activity Relate to Distinct Interkingdom Gut Microbiome States in Ethnically Distinct Ulcerative Colitis Patients. MBio 7:
Johnson, Christine C; Ownby, Dennis R (2016) Allergies and Asthma: Do Atopic Disorders Result from Inadequate Immune Homeostasis arising from Infant Gut Dysbiosis? Expert Rev Clin Immunol 12:379-88
Ownby, Dennis; Johnson, Christine Cole (2016) Recent Understandings of Pet Allergies. F1000Res 5:
Cassidy-Bushrow, A E; Sitarik, A; Levin, A M et al. (2016) Maternal group B Streptococcus and the infant gut microbiota. J Dev Orig Health Dis 7:45-53
Levin, Albert M; Sitarik, Alexandra R; Havstad, Suzanne L et al. (2016) Joint effects of pregnancy, sociocultural, and environmental factors on early life gut microbiome structure and diversity. Sci Rep 6:31775
Lynch, Susan V; Boushey, Homer A (2016) The microbiome and development of allergic disease. Curr Opin Allergy Clin Immunol 16:165-71
Joseph, Christine L M; Zoratti, Edward M; Ownby, Dennis R et al. (2016) Exploring racial differences in IgE-mediated food allergy in the WHEALS birth cohort. Ann Allergy Asthma Immunol 116:219-224.e1
Fujimura, Kei E; Sitarik, Alexandra R; Havstad, Suzanne et al. (2016) Neonatal gut microbiota associates with childhood multisensitized atopy and T cell differentiation. Nat Med 22:1187-1191

Showing the most recent 10 out of 34 publications