The overall goals of Project 3 are to understand the high-resolution structural correlates of immunodominance and to provide structural foundations for designing immunogens that can focus an immune response on particular, chosen epitopes. Our principal hypothesis is that structural contributions to immunodominance can be revealed by correlating structures of antibody-antigen complexes with knowledge of the repertoire from which the antibody was derived and reconstruction of the mutational sequence that led to the affinity matured antibody from its germline precursor. The high-throughput approaches described in Project 1 can give us the required information about repertoire and about affinity maturation of antibodies denved from the settings of vaccination vs. infection. We propose here to provide the corresponding three-dimensional information. We have the following four Aims. [1) What are the structural characteristics of cross-reactive antibodies bound with their HA epitopes? We will determine structures of selected representatives of the antibodies studied in projects 1 and 2, in complex with the relevant influenza virus HA. We will begin with standard crystallographic approaches, but proceed as rapidly as possible to higher-throughput cryoEM methods (Aim 2;see also Core C). (2) We will develop approaches for mounting

Public Health Relevance

Design of immunogens that can focus a response on chosen epitopes is an important but elusive goal for vaccine development in general and for influenza virus in particular. We expect that by combining full repertoire analysis as afforded by the technologies implemented in Project 1 with the cryoEM structural approaches proposed here, we can create an effective and implementable link between structural understanding and vaccine development.

Agency
National Institute of Health (NIH)
Institute
National Institute of Allergy and Infectious Diseases (NIAID)
Type
Research Program Projects (P01)
Project #
5P01AI089618-03
Application #
8516984
Study Section
Special Emphasis Panel (ZAI1-LR-I)
Project Start
2013-08-01
Project End
2016-07-31
Budget Start
2013-08-01
Budget End
2014-07-31
Support Year
3
Fiscal Year
2013
Total Cost
$372,904
Indirect Cost
$48,348
Name
Children's Hospital Boston
Department
Type
DUNS #
076593722
City
Boston
State
MA
Country
United States
Zip Code
02115
Kuraoka, Masayuki; Schmidt, Aaron G; Nojima, Takuya et al. (2016) Complex Antigens Drive Permissive Clonal Selection in Germinal Centers. Immunity 44:542-52
Xu, Huafeng; Schmidt, Aaron G; O'Donnell, Timothy et al. (2015) Key mutations stabilize antigen-binding conformation during affinity maturation of a broadly neutralizing influenza antibody lineage. Proteins 83:771-80
Schmidt, Aaron G; Do, Khoi T; McCarthy, Kevin R et al. (2015) Immunogenic Stimulus for Germline Precursors of Antibodies that Engage the Influenza Hemagglutinin Receptor-Binding Site. Cell Rep 13:2842-50
Harrison, Stephen C (2015) Viral membrane fusion. Virology 479-480:498-507
Schmidt, Aaron G; Therkelsen, Matthew D; Stewart, Shaun et al. (2015) Viral receptor-binding site antibodies with diverse germline origins. Cell 161:1026-34
Jackson, Katherine J L; Liu, Yi; Roskin, Krishna M et al. (2014) Human responses to influenza vaccination show seroconversion signatures and convergent antibody rearrangements. Cell Host Microbe 16:105-14
Schmidt, Aaron G; Xu, Huafeng; Khan, Amir R et al. (2013) Preconfiguration of the antigen-binding site during affinity maturation of a broadly neutralizing influenza virus antibody. Proc Natl Acad Sci U S A 110:264-9
Dormitzer, Philip R; Grandi, Guido; Rappuoli, Rino (2012) Structural vaccinology starts to deliver. Nat Rev Microbiol 10:807-13
Whittle, James R R; Zhang, Ruijun; Khurana, Surender et al. (2011) Broadly neutralizing human antibody that recognizes the receptor-binding pocket of influenza virus hemagglutinin. Proc Natl Acad Sci U S A 108:14216-21