Our long-term goal is to study the regulation of immune responses under normal and diseased conditions, particularly the involvement of protein ubiquitination pathway in lymphocyte development, activation, and tolerance induction. Cbl-b is composed of an N-terminal tyrosine kinase binding domain, a RING finger, and C-terminal proline-rich sequences. Genetic studies using Cbl-b deficient mice have shown that Cbl-b is critical in T cell activation, and loss of Cbl-b results in increased autoimmunity. Cbl-b functions as RING-type E3 ubiquitin ligase to promote ubiquitin conjugation to critical signaling molelcules and affects their biological functions. More importantly, we showed that Cbl-b is upregulated during T cell anergy induction and controls the tolerigenic process, thus linking protein ubiquitination pathway to the T cell tolerance. We have recently obtained some unexpected and novel observations. Particularly, we found that Cbl-b is involved in the regulation of Foxp3 expression in inducible regulatory T cells (iTregs) via modulating a novel signaling pathway directly acting at the transcriptional regulation of Foxp3 gene. The new findings form a strong basis for us to hypothesize that Cbl-b plays an essential role in controlling immune responses via promoting protein ubiquitination. In this proposal, we will plan: 1) to investigate the molecular mechanisms by which Cblb E3 ubiquitn ligase regulates Foxp3 gene transcription via modulating Foxo3a-directed gene transcription and to perform genome-wide gene profiling of Tregs to understand the molecular regulation of epigenetic control in Tregs;2) to examine the in vivo function of iTregs in mouse models of autoimmunity and airway inflammation. These studies will significantly advance our understanding ofthe molecular mechanisms governing Foxp3 gene transcription and ITreg-mediated immune regulation. Such knowledge will eventually facilitate the design of novel therapeutic approaches for cancer, autoimmune and allergic diseases.

Public Health Relevance

The immune system has evolved to mount robust responses against invading pathogens, but at the same time is tolerant to self-tissues or self-antigens. The mechanisms governing immune tolerance are not clear. This proposal will study the mechanisms by which the immune responses are properly controlled. Such knowledge will eventually facilitate the design of novel therapeutic approaches for immunological diseases.

Agency
National Institute of Health (NIH)
Institute
National Institute of Allergy and Infectious Diseases (NIAID)
Type
Research Program Projects (P01)
Project #
5P01AI089624-05
Application #
8860293
Study Section
Special Emphasis Panel (ZAI1)
Project Start
Project End
Budget Start
2014-07-01
Budget End
2015-06-30
Support Year
5
Fiscal Year
2014
Total Cost
Indirect Cost
Name
La Jolla Institute
Department
Type
DUNS #
City
La Jolla
State
CA
Country
United States
Zip Code
92037
Park, Yoon; Jin, Hyung-Seung; Lopez, Justine et al. (2016) SHARPIN controls regulatory T cells by negatively modulating the T cell antigen receptor complex. Nat Immunol 17:286-96
Lee, Jee H; Elly, Chris; Park, Yoon et al. (2015) E3 Ubiquitin Ligase VHL Regulates Hypoxia-Inducible Factor-1α to Maintain Regulatory T Cell Stability and Suppressive Capacity. Immunity 42:1062-74
Aki, Daisuke; Zhang, Wen; Liu, Yun-Cai (2015) The E3 ligase Itch in immune regulation and beyond. Immunol Rev 266:6-26
Eun, So-Young; Lee, Seung-Woo; Xu, Yanfei et al. (2015) 4-1BB ligand signaling to T cells limits T cell activation. J Immunol 194:134-41
Krause, Petra; Morris, Venetia; Greenbaum, Jason A et al. (2015) IL-10-producing intestinal macrophages prevent excessive antibacterial innate immunity by limiting IL-23 synthesis. Nat Commun 6:7055
Kong, Kok-Fai; Fu, Guo; Zhang, Yaoyang et al. (2014) Protein kinase C-η controls CTLA-4-mediated regulatory T cell function. Nat Immunol 15:465-72
Croft, Michael (2014) The TNF family in T cell differentiation and function--unanswered questions and future directions. Semin Immunol 26:183-90
Madireddi, Shravan; Eun, So-Young; Lee, Seung-Woo et al. (2014) Galectin-9 controls the therapeutic activity of 4-1BB-targeting antibodies. J Exp Med 211:1433-48
Duan, Wei; Croft, Michael (2014) Control of regulatory T cells and airway tolerance by lung macrophages and dendritic cells. Ann Am Thorac Soc 11 Suppl 5:S306-13
Baca Jones, Carmen; Pagni, Philippe P; Fousteri, Georgia et al. (2014) Regulatory T cells control diabetes without compromising acute anti-viral defense. Clin Immunol 153:298-307

Showing the most recent 10 out of 37 publications