Innate immune defense sensors and signaling pathways represent the first line of defense against infection by microbial pathogens, including HIV, the causative agent of AIDS. The goals of this specific project are to help define the immune defense pathways that regulate specific stages ofthe HIV-1 replication cycle, and to contribute to the development of kinetic mathematical models that can explain, and predict, the early innate immune response to HIV-1 infection. The early steps of virus replication that will be analyzed are those leading up to virus-cell membrane fusion, reverse transcription, nuclear import, and viral DNA integration. The late steps that will be analyzed are viral gene expression, RNA splicing, translation, and virus assembly/release. These studies exploit a unique dataset that includes candidate innate immune factors that were identified either through genome-wide siRNA or cDNA screening for their effects on HIV-1 infection. There is substantial overiap between these candidate genes and those in the innate immune database, interferon-stimulated genes, and genes under positive selection. However, approximately 15% of the candidate genes have not been implicated before in innate immune responses and these are potentially new players in the innate response to HIV-1. Our studies will also evaluate the roles of HIV-1 accessory proteins Vif, Vpr, Nef, and Vpu, as candidate viral countermeasures of specific innate immune factor functions. Taken together, these studies will significantly advance the understanding of the innate immune response to HIV-1 infection at a systems-wide level and they will contribute to the development of mathematical models that can predict the nature of these innate responses, providing valuable new insights into antiviral and vaccine approaches.

Public Health Relevance

We are attempting to understand the comprehensive innate immune response to early HIV-1 infection using a systems biology approach. Candidate innate immune factors, that we have identified, will be tested for their effects on the rates of different steps of HIV-1 replication. This information will be used to generate mathematical models that can explain and predict the behavior of these responses, information that will be invaluable for future antiviral and vaccine design.

Agency
National Institute of Health (NIH)
Institute
National Institute of Allergy and Infectious Diseases (NIAID)
Type
Research Program Projects (P01)
Project #
7P01AI090935-05
Application #
8707330
Study Section
Special Emphasis Panel (ZAI1-EC-A)
Project Start
Project End
Budget Start
2014-08-01
Budget End
2015-07-31
Support Year
5
Fiscal Year
2014
Total Cost
$573,080
Indirect Cost
$133,426
Name
Sanford-Burnham Medical Research Institute
Department
Type
DUNS #
020520466
City
La Jolla
State
CA
Country
United States
Zip Code
92037
Hultquist, Judd F; Schumann, Kathrin; Woo, Jonathan M et al. (2016) A Cas9 Ribonucleoprotein Platform for Functional Genetic Studies of HIV-Host Interactions in Primary Human T Cells. Cell Rep 17:1438-1452
Heaton, Nicholas S; Moshkina, Natasha; Fenouil, Romain et al. (2016) Targeting Viral Proteostasis Limits Influenza Virus, HIV, and Dengue Virus Infection. Immunity 44:46-58
Cheng, Zhang; Hoffmann, Alexander (2016) A stochastic spatio-temporal (SST) model to study cell-to-cell variability in HIV-1 infection. J Theor Biol 395:87-96
Guo, Haitao; König, Renate; Deng, Meng et al. (2016) NLRX1 Sequesters STING to Negatively Regulate the Interferon Response, Thereby Facilitating the Replication of HIV-1 and DNA Viruses. Cell Host Microbe 19:515-28
Blakely, Collin M; Pazarentzos, Evangelos; Olivas, Victor et al. (2015) NF-κB-activating complex engaged in response to EGFR oncogene inhibition drives tumor cell survival and residual disease in lung cancer. Cell Rep 11:98-110
Sherrill-Mix, Scott; Ocwieja, Karen E; Bushman, Frederic D (2015) Gene activity in primary T cells infected with HIV89.6: intron retention and induction of genomic repeats. Retrovirology 12:79
Zhang, Xianqin; Bogunovic, Dusan; Payelle-Brogard, Béatrice et al. (2015) Human intracellular ISG15 prevents interferon-α/β over-amplification and auto-inflammation. Nature 517:89-93
Costa, Helio A; Leitner, Michael G; Sos, Martin L et al. (2015) Discovery and functional characterization of a neomorphic PTEN mutation. Proc Natl Acad Sci U S A 112:13976-81
Manganaro, Lara; de Castro, Elisa; Maestre, Ana M et al. (2015) HIV Vpu Interferes with NF-κB Activity but Not with Interferon Regulatory Factor 3. J Virol 89:9781-90
Shah, Priya S; Wojcechowskyj, Jason A; Eckhardt, Manon et al. (2015) Comparative mapping of host-pathogen protein-protein interactions. Curr Opin Microbiol 27:62-8

Showing the most recent 10 out of 87 publications