The generation of an effective pan-influenza vaccine should induce the following immune memory responses: 1) protective titers of serum antibody that potently neutralizes a wide variety of influenza strains; 2) a robust memory B cell pool that can be rapidly adapted by somatic mutation to neutralize varying influenza strains that evolve in the future; and 3) the requisite T cell mediated memory response to support this adaptation within germinal center reactions. The three projects in this program will work towards these goals using the mAb technology core as a central resource in order to inform antigen and vaccine design. These antibodies will be used to quantify the efficiency of broadly-neutralizing antibodies elicited in mice and to evaluate the ability of human B cell responses to target candidate epitope specificities such as those induced by the long alpha helix of the HA2 molecule and the headless HA construct from Peter Palese's group. The studies proposed will generate large panels of both mouse and human mAbs that may themselves be valuable as therapeutic reagents to treat severe cases of influenza infection. The relative efficacy of these antibodies and thus the epitopes that elicit them will be evaluated in vivo by the Garcia-Sastre project. The requisite T cell epitopes required to elicit broadly protective antibodies will be evaluated by the Ahmed project, using the core to evaluate the spectrum of B cell epitopes supported by T cell epitopes during influenza responses in both mice and humans. The mAb core will be responsible generating both classic mouse hybridomas and recombinant monoclonal antibodies for use by the three projects. The Core will also be responsible for the initial biochemical characterization of both human and mouse monoclonals. Specifically, Project 1 will use the core to generate mAbs against broadly neutralizing epitopes. This project will utilize the core extensively for production of mouse antibodies. Further, the core will provide broadly protective human antibodies to template novel vaccine candidate constructs. Project 2 will explore coordinate epitope specificities in mice lymphoid tissues and human tonsils. The B cell epitopes will be identified through the generation of mouse and human antibodies from the same tissues that TFH cells are isolated. Project 3 will examine the efficacy of mAbs generated by the core for prophylaxis against various influenza virus strains in mice and ferrets. These mAbs will help in evaluating candidate vaccine efficacy and identify mechanisms of neutralization.

Public Health Relevance

The goal of generating a broadly protective vaccine effective against most influenza strains is centered on the specificity of antibodies that can be induced. This core will utilize our specialized approaches to generate and study antibody responses to assist the program projects to both template and evaluate candidate pan-influenza vaccines.

Agency
National Institute of Health (NIH)
Institute
National Institute of Allergy and Infectious Diseases (NIAID)
Type
Research Program Projects (P01)
Project #
4P01AI097092-05
Application #
9110189
Study Section
Special Emphasis Panel (ZAI1)
Project Start
Project End
Budget Start
2016-08-01
Budget End
2017-07-31
Support Year
5
Fiscal Year
2016
Total Cost
Indirect Cost
Name
Icahn School of Medicine at Mount Sinai
Department
Type
DUNS #
078861598
City
New York
State
NY
Country
United States
Zip Code
10029
Fulton, Benjamin O; Sun, Weina; Heaton, Nicholas S et al. (2018) The Influenza B Virus Hemagglutinin Head Domain Is Less Tolerant to Transposon Mutagenesis than That of the Influenza A Virus. J Virol 92:
Coughlan, Lynda; Palese, Peter (2018) Overcoming Barriers in the Path to a Universal Influenza Virus Vaccine. Cell Host Microbe 24:18-24
Henry, Carole; Palm, Anna-Karin E; Krammer, Florian et al. (2018) From Original Antigenic Sin to the Universal Influenza Virus Vaccine. Trends Immunol 39:70-79
Broecker, Felix; Liu, Sean T H; Sun, Weina et al. (2018) Immunodominance of Antigenic Site B in the Hemagglutinin of the Current H3N2 Influenza Virus in Humans and Mice. J Virol 92:
Bailey, Mark J; Broecker, Felix; Leon, Paul E et al. (2018) A Method to Assess Fc-mediated Effector Functions Induced by Influenza Hemagglutinin Specific Antibodies. J Vis Exp :
Stamper, Christopher T; Wilson, Patrick C (2018) What Are the Primary Limitations in B-Cell Affinity Maturation, and How Much Affinity Maturation Can We Drive with Vaccination? Is Affinity Maturation a Self-Defeating Process for Eliciting Broad Protection? Cold Spring Harb Perspect Biol 10:
Ajmani, Gaurav S; Suh, Helen H; Wroblewski, Kristen E et al. (2017) Smoking and olfactory dysfunction: A systematic literature review and meta-analysis. Laryngoscope 127:1753-1761
Leon, Paul E; Wohlbold, Teddy John; He, Wenqian et al. (2017) Generation of Escape Variants of Neutralizing Influenza Virus Monoclonal Antibodies. J Vis Exp :
He, Wenqian; Chen, Chi-Jene; Mullarkey, Caitlin E et al. (2017) Alveolar macrophages are critical for broadly-reactive antibody-mediated protection against influenza A virus in mice. Nat Commun 8:846
Martín-Vicente, María; Medrano, Luz M; Resino, Salvador et al. (2017) TRIM25 in the Regulation of the Antiviral Innate Immunity. Front Immunol 8:1187

Showing the most recent 10 out of 86 publications