The development of leukemia has been observed in 5 out of 19 SCID-Xl pafients treated by stem cell gene therapy. In all 5 pafients the development of leukemia was due to insertional mutagenesis, i.e. the retrovirus- mediated activafion of nearby proto-oncogenes. Thus, the careful study of integration sites and the contribufion of individual clones to repopulafion will be of crucial importance for all gene therapy studies, and the FDA has mandated the careful monitoring of retroviral integration sites in all clinical gene therapy studies. The Vector Integration and Tracking Core D will provide all projects a centralized facility to efficiently identify foamy virus (FV) vector integrafion sites in complex biological DNA samples from in vitro or in vivo studies. We will use recenfiy developed improved non-restricfion (nr)LAM-PCR. The core will be able to process a variety of samples from murine, dog, or human to generate DNA for shuttle vector or PCR- based methods. For nrLAM-PCR, as little as lOng of DNA can be used to carry out FV vector integrafion site amplificafion and extended processing in preparation for sequencing. The samples processed by Core D will be compafible with both Sanger-based sequencing for pilot experiments and new sequencing methodologies, such as pyrosequencing, for deep sequencing to identify all of the amplifiable FV vector integration sites in a given sample. Core D will also provide assistance to all projects to design primers specific to FV vector integrafion sites to allow for DNA-based real time (RT)-PCR tracking to assess the contribufion for individual clones that are deemed important for further invesfigation. In addifion, Core D will provide a centralized facility to analyze integrafion sites via a common gateway interface (CGI)-PERL web server. Current versions of the human (hg19), dog (canFam2) and mouse (mm9) genomes will be supported. The Core will also provide support to investigators through PERL programs to correlate FV vector integration sites with data from published databases including proto-oncogene TSS, microarray data and over- represented gene classes. The bioinformatics component will also generate random datasets for all three genomes, human, mouse and dog, to evaluate over-represented gene classes near vector proviruses.

Public Health Relevance

The focus of this PPG is to test the efficacy and safety of the most appropriate retrovirus vector system, FV vectors for the treatment of SCID-Xl. An indispensible aspect of retrovirus-based safety analysis is integration site profiling and characterization of the surrounding genomic elements.
The specific aims of Core D will provide a careful standardized approach defining the safety of the current and improved FV vectors developed in Projects 1-3.

Agency
National Institute of Health (NIH)
Institute
National Institute of Allergy and Infectious Diseases (NIAID)
Type
Research Program Projects (P01)
Project #
1P01AI097100-01
Application #
8278891
Study Section
Special Emphasis Panel (ZAI1-JTS-I (S1))
Project Start
2012-08-07
Project End
2017-07-31
Budget Start
2012-08-07
Budget End
2013-07-31
Support Year
1
Fiscal Year
2012
Total Cost
$489,744
Indirect Cost
$105,310
Name
Seattle Children's Hospital
Department
Type
DUNS #
048682157
City
Seattle
State
WA
Country
United States
Zip Code
98105
Everson, Elizabeth M; Trobridge, Grant D (2016) Retroviral vector interactions with hematopoietic cells. Curr Opin Virol 21:41-46
Bii, Victor M; Trobridge, Grant D (2016) Identifying Cancer Driver Genes Using Replication-Incompetent Retroviral Vectors. Cancers (Basel) 8:
Everson, Elizabeth M; Olzsko, Miles E; Leap, David J et al. (2016) A comparison of foamy and lentiviral vector genotoxicity in SCID-repopulating cells shows foamy vectors are less prone to clonal dominance. Mol Ther Methods Clin Dev 3:16048
Hocum, Jonah D; Linde, Ian; Rae, Dustin T et al. (2016) Retargeted Foamy Virus Vectors Integrate Less Frequently Near Proto-oncogenes. Sci Rep 6:36610
Adair, Jennifer E; Waters, Timothy; Haworth, Kevin G et al. (2016) Semi-automated closed system manufacturing of lentivirus gene-modified haematopoietic stem cells for gene therapy. Nat Commun 7:13173
Humbert, Olivier; Gisch, Don W; Wohlfahrt, Martin E et al. (2016) Development of Third-generation Cocal Envelope Producer Cell Lines for Robust Lentiviral Gene Transfer into Hematopoietic Stem Cells and T-cells. Mol Ther 24:1237-46
Browning, Diana L; Collins, Casey P; Hocum, Jonah D et al. (2016) Insulated Foamy Viral Vectors. Hum Gene Ther 27:255-66
Rae, Dustin T; Collins, Casey P; Hocum, Jonah D et al. (2015) Modified Genomic Sequencing PCR Using the MiSeq Platform to Identify Retroviral Integration Sites. Hum Gene Ther Methods 26:221-7
Felsburg, Peter J; De Ravin, Suk See; Malech, Harry L et al. (2015) Gene therapy studies in a canine model of X-linked severe combined immunodeficiency. Hum Gene Ther Clin Dev 26:50-6
Gori, Jennifer L; Butler, Jason M; Chan, Yan-Yi et al. (2015) Vascular niche promotes hematopoietic multipotent progenitor formation from pluripotent stem cells. J Clin Invest 125:1243-54

Showing the most recent 10 out of 35 publications