Development of an integrated FV-based gene therapy for SCID-Xl requires efficient integration of our proposed basic and translational research efforts and supporting core services across five institutions (Seattle Children's Research Institute (SCRl); Fred Hutchinson Cancer Research Institute (FHCRC); Washington State University (WSU); University of Washington (UW) and University of Pennsylvania (U of Penn)). The overall goal of the Administrative Core is to facilitate success by coordination of the administrative, fiscal and organizational aspects of our PPG program. Specifically, the Core will: provide administrative support for management of financial resources, expenditure and budgetary tracking; coordinate meetings and communications and disseminate key information among investigators and with the larger scientific community; orchestrate an annual External Advisory Committee site visit; and ensure that the highest ethical standards are met in conducting our studies. Core activities will interface with scientific and administrative staff at all collaborating institutions and provide a bridge between these institutions to ensure smooth operation of the program. Our administrative staff is already adept at handling the complexities created by such a combined program. Dr. Rawlings and Dr. Kiem have been collaborating for more than 5 years on gene therapy related studies. They will work together to lead Core A and thereby effectively direct and coordinate overall project work flow. To accomplish this, key Core A personnel will be located at each of their respective institutions, SCRl and FHCRC.

Public Health Relevance

Successful development of FV vector-based gene therapy for SCID-Xl requires integration of our studies across five institutions. The Administrative Core will facilitate success by coordination of the administrative, fiscal and organizational aspects of our program. Core activities will interface with scientific and administrative staff at all institutions to provide a bridge ensuring smooth operation.

Agency
National Institute of Health (NIH)
Institute
National Institute of Allergy and Infectious Diseases (NIAID)
Type
Research Program Projects (P01)
Project #
4P01AI097100-05
Application #
9117267
Study Section
Special Emphasis Panel (ZAI1)
Project Start
Project End
Budget Start
2016-08-01
Budget End
2017-07-31
Support Year
5
Fiscal Year
2016
Total Cost
Indirect Cost
Name
Seattle Children's Hospital
Department
Type
DUNS #
048682157
City
Seattle
State
WA
Country
United States
Zip Code
98101
Humbert, Olivier; Chan, Frieda; Rajawat, Yogendra S et al. (2018) Rapid immune reconstitution of SCID-X1 canines after G-CSF/AMD3100 mobilization and in vivo gene therapy. Blood Adv 2:987-999
Browning, D L; Everson, E M; Leap, D J et al. (2017) Evidence for the in vivo safety of insulated foamy viral vectors. Gene Ther 24:187-198
Singh, Swati; Khan, Iram; Khim, Socheath et al. (2017) Safe and Effective Gene Therapy for Murine Wiskott-Aldrich Syndrome Using an Insulated Lentiviral Vector. Mol Ther Methods Clin Dev 4:1-16
Nalla, Arun K; Trobridge, Grant D (2016) Prospects for Foamy Viral Vector Anti-HIV Gene Therapy. Biomedicines 4:
Browning, Diana L; Trobridge, Grant D (2016) Insulators to Improve the Safety of Retroviral Vectors for HIV Gene Therapy. Biomedicines 4:
Browning, Diana L; Collins, Casey P; Hocum, Jonah D et al. (2016) Insulated Foamy Viral Vectors. Hum Gene Ther 27:255-66
Bii, Victor M; Trobridge, Grant D (2016) Identifying Cancer Driver Genes Using Replication-Incompetent Retroviral Vectors. Cancers (Basel) 8:
Adair, Jennifer E; Waters, Timothy; Haworth, Kevin G et al. (2016) Semi-automated closed system manufacturing of lentivirus gene-modified haematopoietic stem cells for gene therapy. Nat Commun 7:13173
Nalla, Arun K; Williams, Theodore F; Collins, Casey P et al. (2016) Lentiviral vector-mediated insertional mutagenesis screen identifies genes that influence androgen independent prostate cancer progression and predict clinical outcome. Mol Carcinog 55:1761-1771
Humbert, Olivier; Gisch, Don W; Wohlfahrt, Martin E et al. (2016) Development of Third-generation Cocal Envelope Producer Cell Lines for Robust Lentiviral Gene Transfer into Hematopoietic Stem Cells and T-cells. Mol Ther 24:1237-46

Showing the most recent 10 out of 40 publications