HIV/AIDS remains a global health problem that needs to be addressed with basic and applied research Methods developed by Dr. Nussenzweig to isolate large numbers of anti-HIV antibodies from the sera of HIV-infected individuals offers the opportunity for comprehensive structural and functional experiments to study the new antibodies using structural biology, in vitro and in vivo characterizations, and studies of effector functions mediated by Fc receptors. Expression and production of purified proteins, including HIV proteins, Fc receptors, and natural and designed antibodies, is a major component of our program project. Dr. Nussenzweig will need large quantities of purified antibodies as well as gp120s and gp140s designed to be potential immunogens for the in vivo studies proposed in Project 1. Dr. Ravetch will need a panel of HAAD and other anti-HIV antibodies with modified Fc regions and altered glycans for evaluating effector functions in Project 2. Dr. Bjorkman will need large quantities of purified Fabs, Fc receptors, and many forms of gpl20 or gpl40 antigens (including resurfaced gpl20s) for complex formation, crystallization, structure determinations, and immunogen studies in Project 3. The large number of different antibodies, HIV proteins, and Fc receptors to be expressed and purified requires a dedicated protein expression core.

Public Health Relevance

Biochemical, structural, and cellular assays to evaluate a new set of anti-HIV antibodies will require expression of large numbers of proteins, including HIV envelope proteins and antibodies. The Protein Expression Core will provide purified proteins for this program project, which will facilitate the goals of understanding how to elicit broadly neutralizing antibodies with enhanced effector functions, and how to improve them for passive immunization.

Agency
National Institute of Health (NIH)
Institute
National Institute of Allergy and Infectious Diseases (NIAID)
Type
Research Program Projects (P01)
Project #
1P01AI100148-01A1
Application #
8517330
Study Section
Special Emphasis Panel (ZAI1-RRS-A (J1))
Project Start
Project End
Budget Start
2013-02-10
Budget End
2014-01-31
Support Year
1
Fiscal Year
2013
Total Cost
$173,232
Indirect Cost
$31,863
Name
California Institute of Technology
Department
Type
DUNS #
009584210
City
Pasadena
State
CA
Country
United States
Zip Code
91125
Scheid, Johannes F; Horwitz, Joshua A; Bar-On, Yotam et al. (2016) HIV-1 antibody 3BNC117 suppresses viral rebound in humans during treatment interruption. Nature 535:556-60
Lu, Ching-Lan; Murakowski, Dariusz K; Bournazos, Stylianos et al. (2016) Enhanced clearance of HIV-1-infected cells by broadly neutralizing antibodies against HIV-1 in vivo. Science 352:1001-4
Escolano, Amelia; Steichen, Jon M; Dosenovic, Pia et al. (2016) Sequential Immunization Elicits Broadly Neutralizing Anti-HIV-1 Antibodies in Ig Knockin Mice. Cell 166:1445-1458.e12
McGuire, Andrew T; Gray, Matthew D; Dosenovic, Pia et al. (2016) Specifically modified Env immunogens activate B-cell precursors of broadly neutralizing HIV-1 antibodies in transgenic mice. Nat Commun 7:10618
Gautam, Rajeev; Nishimura, Yoshiaki; Pegu, Amarendra et al. (2016) A single injection of anti-HIV-1 antibodies protects against repeated SHIV challenges. Nature 533:105-9
Zolla-Pazner, Susan; Cohen, Sandra Sharpe; Boyd, David et al. (2016) Structure/Function Studies Involving the V3 Region of the HIV-1 Envelope Delineate Multiple Factors That Affect Neutralization Sensitivity. J Virol 90:636-49
Halper-Stromberg, Ariel; Nussenzweig, Michel C (2016) Towards HIV-1 remission: potential roles for broadly neutralizing antibodies. J Clin Invest 126:415-23
Steichen, Jon M; Kulp, Daniel W; Tokatlian, Talar et al. (2016) HIV Vaccine Design to Target Germline Precursors of Glycan-Dependent Broadly Neutralizing Antibodies. Immunity 45:483-96
Gristick, Harry B; von Boehmer, Lotta; West Jr, Anthony P et al. (2016) Natively glycosylated HIV-1 Env structure reveals new mode for antibody recognition of the CD4-binding site. Nat Struct Mol Biol 23:906-915
Scharf, Louise; West, Anthony P; Sievers, Stuart A et al. (2016) Structural basis for germline antibody recognition of HIV-1 immunogens. Elife 5:

Showing the most recent 10 out of 38 publications