This P01 Program Project application seeks to develop insights into mechanisms by which antibodies (Abs) protect against HIV infection to facilitate design of improved Abs and effective immunogens. Development of effective vaccines or delivered Abs to control infection will require understanding of Ab interactions with antigen and with Ab receptors that mediate effector functions. Using knowledge of what Env mutations arise in response to HIV infection in humanized mice allows structural/bioinformatic analyses of which features promote Ab evasion, required information for designing broadly neutralizing antibodies (bNAbs) that are insensitive to common routes of viral evasion. This knowledge will allow optimization of the breadth/potency of bNAbs for passive delivery (both by injection and gene therapy reverse vaccination) and is required for effective immunogen design for vaccines, thus our project is relevant to both traditional and reverse vaccine strategies to combat HIV. To accomplish these goals and to establish basic principles underlying Ab-mediated protection, we will combine the expertise of the Nussenzweig, Ravetch, and Bjorkman laboratories in characterization of HIV bNAbs and humanized mouse models of HIV infection, antibody effector function evaluation and improvement, and the structural biology of Ab-HIV and Ab-receptor interactions. Our proposal comprises three separate, but inter-related and inter-dependent collaborative projects, with the following aims: (1) Test designed bNAbs in a humanized mouse model of HIV infection, sequence resistant HIV strains, evaluate bNAbs for ability to control established HIV infection in humanized mice, and evaluate novel immunogens in a mouse model; (2) Investigate the contributions of Fc effector function to HIV bNAbs in vitro and in vivo, including in a new in vivo mouse model for HIV entry and an AAV-based reverse immunization model in humanized mice; (3) Determine structural correlates of broad/potent neutralization and improved effector functions by solving crystal structures of designed and natural bNAbs complexed with HIV Env proteins and Fc receptors; design and test immunogens for eliciting bNAbs. These projects will be supported by an administrative core and three scientific cores comprising a cell/biochemical automation core to perform automated in vitro HIV neutralization and plate-binding assays, a protein expression core to express and purify recombinant proteins required for functional and structural studies, and an animal services core to generate/maintain mice required for in vivo experiments.

Public Health Relevance

HIV/AIDS remains a global epidemic with an urgent need for a vaccine and/or new therapies. Our project goals are to discover the mechanisms by which anti-HIV antibodies can prevent or treat infection (through Fab-mediated neutralization and Fc-mediated effector functions) and how HIV can escape through mutation, critical knowledge required for improving natural bNAbs as therapeutics and designing immunogens to elicit bNAbs.

Agency
National Institute of Health (NIH)
Institute
National Institute of Allergy and Infectious Diseases (NIAID)
Type
Research Program Projects (P01)
Project #
5P01AI100148-05
Application #
9208088
Study Section
Special Emphasis Panel (ZAI1-RRS-A (J1))
Program Officer
Dang, Que
Project Start
2013-02-10
Project End
2018-01-31
Budget Start
2017-02-01
Budget End
2018-01-31
Support Year
5
Fiscal Year
2017
Total Cost
$2,100,311
Indirect Cost
$401,441
Name
California Institute of Technology
Department
Type
Schools of Arts and Sciences
DUNS #
009584210
City
Pasadena
State
CA
Country
United States
Zip Code
91125
Wang, Haoqing; Barnes, Christopher O; Yang, Zhi et al. (2018) Partially Open HIV-1 Envelope Structures Exhibit Conformational Changes Relevant for Coreceptor Binding and Fusion. Cell Host Microbe 24:579-592.e4
Stadtmueller, Beth M; Bridges, Michael D; Dam, Kim-Marie et al. (2018) DEER Spectroscopy Measurements Reveal Multiple Conformations of HIV-1 SOSIP Envelopes that Show Similarities with Envelopes on Native Virions. Immunity 49:235-246.e4
Gautam, Rajeev; Nishimura, Yoshiaki; Gaughan, Natalie et al. (2018) A single injection of crystallizable fragment domain-modified antibodies elicits durable protection from SHIV infection. Nat Med 24:610-616
Cohn, Lillian B; da Silva, Israel T; Valieris, Renan et al. (2018) Clonal CD4+ T cells in the HIV-1 latent reservoir display a distinct gene profile upon reactivation. Nat Med 24:604-609
Bournazos, Stylianos; Ravetch, Jeffrey V (2017) Fc? Receptor Function and the Design of Vaccination Strategies. Immunity 47:224-233
Freund, Natalia T; Wang, Haoqing; Scharf, Louise et al. (2017) Coexistence of potent HIV-1 broadly neutralizing antibodies and antibody-sensitive viruses in a viremic controller. Sci Transl Med 9:
Mayer, Christian T; Gazumyan, Anna; Kara, Ervin E et al. (2017) The microanatomic segregation of selection by apoptosis in the germinal center. Science 358:
Wang, Haoqing; Gristick, Harry B; Scharf, Louise et al. (2017) Asymmetric recognition of HIV-1 Envelope trimer by V1V2 loop-targeting antibodies. Elife 6:
Horwitz, Joshua A; Bar-On, Yotam; Lu, Ching-Lan et al. (2017) Non-neutralizing Antibodies Alter the Course of HIV-1 Infection In Vivo. Cell 170:637-648.e10
Nishimura, Yoshiaki; Gautam, Rajeev; Chun, Tae-Wook et al. (2017) Early antibody therapy can induce long-lasting immunity to SHIV. Nature 543:559-563

Showing the most recent 10 out of 52 publications