This P01 Program Project application seeks to develop insights into mechanisms by which antibodies (Abs) protect against HIV infection to facilitate design of improved Abs and effective immunogens. Development of effective vaccines or delivered Abs to control infection will require understanding of Ab interactions with antigen and with Ab receptors that mediate effector functions. Using knowledge of what Env mutations arise in response to HIV infection in humanized mice allows structural/bioinformatic analyses of which features promote Ab evasion, required information for designing broadly neutralizing antibodies (bNAbs) that are insensitive to common routes of viral evasion. This knowledge will allow optimization of the breadth/potency of bNAbs for passive delivery (both by injection and gene therapy reverse vaccination) and is required for effective immunogen design for vaccines, thus our project is relevant to both traditional and reverse vaccine strategies to combat HIV. To accomplish these goals and to establish basic principles underlying Ab-mediated protection, we will combine the expertise of the Nussenzweig, Ravetch, and Bjorkman laboratories in characterization of HIV bNAbs and humanized mouse models of HIV infection, antibody effector function evaluation and improvement, and the structural biology of Ab-HIV and Ab-receptor interactions. Our proposal comprises three separate, but inter-related and inter-dependent collaborative projects, with the following aims: (1) Test designed bNAbs in a humanized mouse model of HIV infection, sequence resistant HIV strains, evaluate bNAbs for ability to control established HIV infection in humanized mice, and evaluate novel immunogens in a mouse model; (2) Investigate the contributions of Fc effector function to HIV bNAbs in vitro and in vivo, including in a new in vivo mouse model for HIV entry and an AAV-based reverse immunization model in humanized mice; (3) Determine structural correlates of broad/potent neutralization and improved effector functions by solving crystal structures of designed and natural bNAbs complexed with HIV Env proteins and Fc receptors; design and test immunogens for eliciting bNAbs. These projects will be supported by an administrative core and three scientific cores comprising a cell/biochemical automation core to perform automated in vitro HIV neutralization and plate-binding assays, a protein expression core to express and purify recombinant proteins required for functional and structural studies, and an animal services core to generate/maintain mice required for in vivo experiments.

Public Health Relevance

HIV/AIDS remains a global epidemic with an urgent need for a vaccine and/or new therapies. Our project goals are to discover the mechanisms by which anti-HIV antibodies can prevent or treat infection (through Fab-mediated neutralization and Fc-mediated effector functions) and how HIV can escape through mutation, critical knowledge required for improving natural bNAbs as therapeutics and designing immunogens to elicit bNAbs.

Agency
National Institute of Health (NIH)
Institute
National Institute of Allergy and Infectious Diseases (NIAID)
Type
Research Program Projects (P01)
Project #
5P01AI100148-05
Application #
9208088
Study Section
Special Emphasis Panel (ZAI1-RRS-A (J1))
Program Officer
Dang, Que
Project Start
2013-02-10
Project End
2018-01-31
Budget Start
2017-02-01
Budget End
2018-01-31
Support Year
5
Fiscal Year
2017
Total Cost
$2,100,311
Indirect Cost
$401,441
Name
California Institute of Technology
Department
None
Type
Schools of Arts and Sciences
DUNS #
009584210
City
Pasadena
State
CA
Country
United States
Zip Code
91125
Scheid, Johannes F; Horwitz, Joshua A; Bar-On, Yotam et al. (2016) HIV-1 antibody 3BNC117 suppresses viral rebound in humans during treatment interruption. Nature 535:556-60
Lu, Ching-Lan; Murakowski, Dariusz K; Bournazos, Stylianos et al. (2016) Enhanced clearance of HIV-1-infected cells by broadly neutralizing antibodies against HIV-1 in vivo. Science 352:1001-4
Escolano, Amelia; Steichen, Jon M; Dosenovic, Pia et al. (2016) Sequential Immunization Elicits Broadly Neutralizing Anti-HIV-1 Antibodies in Ig Knockin Mice. Cell 166:1445-1458.e12
McGuire, Andrew T; Gray, Matthew D; Dosenovic, Pia et al. (2016) Specifically modified Env immunogens activate B-cell precursors of broadly neutralizing HIV-1 antibodies in transgenic mice. Nat Commun 7:10618
Gautam, Rajeev; Nishimura, Yoshiaki; Pegu, Amarendra et al. (2016) A single injection of anti-HIV-1 antibodies protects against repeated SHIV challenges. Nature 533:105-9
Zolla-Pazner, Susan; Cohen, Sandra Sharpe; Boyd, David et al. (2016) Structure/Function Studies Involving the V3 Region of the HIV-1 Envelope Delineate Multiple Factors That Affect Neutralization Sensitivity. J Virol 90:636-49
Halper-Stromberg, Ariel; Nussenzweig, Michel C (2016) Towards HIV-1 remission: potential roles for broadly neutralizing antibodies. J Clin Invest 126:415-23
Steichen, Jon M; Kulp, Daniel W; Tokatlian, Talar et al. (2016) HIV Vaccine Design to Target Germline Precursors of Glycan-Dependent Broadly Neutralizing Antibodies. Immunity 45:483-96
Gristick, Harry B; von Boehmer, Lotta; West Jr, Anthony P et al. (2016) Natively glycosylated HIV-1 Env structure reveals new mode for antibody recognition of the CD4-binding site. Nat Struct Mol Biol 23:906-915
Scharf, Louise; West, Anthony P; Sievers, Stuart A et al. (2016) Structural basis for germline antibody recognition of HIV-1 immunogens. Elife 5:

Showing the most recent 10 out of 38 publications