The various forms of the HIV-1 envelope (Env) glycoproteins do not serve as ideal immunogens because they poorly induce Abs (Abs) with broad anti-viral functions, and the Ab response lasts <6 months. To overcome these limitations, epitope-scaffold immunogens can be used to focus the Ab response on vulnerable sites on the Env;however, the design of HIV epitope-scaffold immunogens has been fraught with many failures. Nevertheless, epitope-scaffold vaccines candidates have been successfully developed against influenza and Neisseria, and we and others have succeeded in designing several V3-scaffold and V3 peptide immunogens with demonstrable antigenicity and immunogenicity, resulting in the induction of HIV-1 cross-clade neutralizing Abs. In this Project, we propose to focus the immune response on the V2 region of gpl 20. Until recently, this region was virtually overlooked as a target for vaccine development, but its importance as a vaccine target has been recently supported by data showing that anti-V2 Abs can be highly cross-reactive, display neutralizing activity, capture virus particles, and block gp120/a4p7 interaction. Support for pursuing V2 as a promising antigen for vaccine design also comes from pilot studies with specimens from the RV144 clinical vaccine trial. For this Project, we will apply the platform we developed for generating V3-scaffold immunogens to the production of V2-scaffold immunogens to be used for boosting the Ab response after priming with DNA Env.
For Aim 1. 1, we will construct V2 inserts for scaffolded immunogens based on the fine specificity of human V2 polyclonal and monoclonal Abs (mAbs), and on bioinformatics and molecular modeling data.
In Aim 1. 2, we will assess the prevalence and function of anti- V2 Abs of different specificities and clarify how these differ relative to the infecting HIV clade.
For Aim 1. 3, we will select and characterize new human V2-specific mAbs derived from non-clade B-infected donors from Cameroon infected with the clades that induce the most broad and functional anti-V2 Abs. Finally, after selecting V2-scaffold proteins which, from the results of Aim 1.2 and 1.3, react with the most broad, potent and multifunctional anti-V2 polyclonal and mAbs, we will, in Aim 1.4, test the immunogenicity of selected V2 scaffold boosting immunogens in rabbits and non-human primates after priming with Env DNA. The ultimate goal of this Project is to induce antl-V2 Abs in rabbits and non-human primates that display cross-clade anti-viral activities that mediate protection.

Public Health Relevance

Novel concepts are needed to develop an effective HIV vaccine. This project's goal is to design new HIV epitope-scaffold vaccines that will focus the host immune response on vulnerable sites on the V2 loop of the virus envelope glycoprotein. The project will provide important data that will advance the development of a more effective HIV vaccine.

National Institute of Health (NIH)
National Institute of Allergy and Infectious Diseases (NIAID)
Research Program Projects (P01)
Project #
Application #
Study Section
Special Emphasis Panel (ZAI1-JBS-A)
Project Start
Project End
Budget Start
Budget End
Support Year
Fiscal Year
Total Cost
Indirect Cost
New York University
New York
United States
Zip Code
Zolla-Pazner, Susan (2014) A critical question for HIV vaccine development: which antibodies to induce? Science 345:167-8
Zolla-Pazner, Susan; deCamp, Allan; Gilbert, Peter B et al. (2014) Vaccine-induced IgG antibodies to V1V2 regions of multiple HIV-1 subtypes correlate with decreased risk of HIV-1 infection. PLoS One 9:e87572
Evering, Teresa H; Kamau, Edwin; St Bernard, Leslie et al. (2014) Single genome analysis reveals genetic characteristics of Neuroadaptation across HIV-1 envelope. Retrovirology 11:65
Dutta, Moumita; Liu, Jun; Roux, Kenneth H et al. (2014) Visualization of retroviral envelope spikes in complex with the V3 loop antibody 447-52D on intact viruses by cryo-electron tomography. J Virol 88:12265-75
Spurrier, Brett; Sampson, Jared; Gorny, Miroslaw K et al. (2014) Functional implications of the binding mode of a human conformation-dependent V2 monoclonal antibody against HIV. J Virol 88:4100-12
Upadhyay, Chitra; Mayr, Luzia M; Zhang, Jing et al. (2014) Distinct mechanisms regulate exposure of neutralizing epitopes in the V2 and V3 loops of HIV-1 envelope. J Virol 88:12853-65
Mayr, Luzia M; Cohen, Sandra; Spurrier, Brett et al. (2013) Epitope mapping of conformational V2-specific anti-HIV human monoclonal antibodies reveals an immunodominant site in V2. PLoS One 8:e70859
Pan, Ruimin; Sampson, Jared M; Chen, Yuxin et al. (2013) Rabbit anti-HIV-1 monoclonal antibodies raised by immunization can mimic the antigen-binding modes of antibodies derived from HIV-1-infected humans. J Virol 87:10221-31