The main objectives of the Vector Core are to provide high quality self-complementary (sc) and single-stranded (ss) rAAV1 vectors and serologically screen NHP animals suitable for rAAV1 anti-viral studies. We will accomplish these goals through the following specific aims:
Aim 1. To design, create, produce and quality control test scAAV1 vector lots at different scales with a variety of transgenes and expression cassettes to serve the specific needs of other investigators of this program project. More specifically, 120 rhesus macaques will be enrolled for different studies over 5 years and hundreds of mice will used for pre-macaque evaluation. In average, we estimate that 15-20 vector lots will be produced annually to meet the needs of those studies.
Aim 2. To screen NHP populations for pre-existing immunity against AAV1 by using both in vitro and in vivo neutralizing antibody (NAB) assays to select AAV1-NAB free animals for vaccine and therapeutic studies. Pre-screening of NHP population to select the animals without preexisting neutralizing antibody (NAB) to rAAV1 is essential for rAAV1-mediated anti-HIV immunoadhesin gene transfer. Our data suggested that the serological prevalence of primate-derived AAVs in NHP populations ranges from 60-80%. This implies that we may have to screen more than 360 animals to identify 120 animals free of AAV1 NAB.
Aim 3. To develop novel and scalable rAAV production method for larger scale translational NHP studies and future clinical development of rAAV1-based anti- HIV vaccine and therapeutics. Our current AAV production system should meet the vector needs in the early stage of this program project. However, large scale vector production may become a bottle neck for larger translational NHP studies and future clinical development as well. We will utilize our extensive experience in developing various vector packaging cell lines and infection-based vector production system to develop a 293 cell infection-based novel and scalable production method to overcome this limitation.

Public Health Relevance

The Vector Core focuses on design, production and QC testing of rAAV- based antiviral therapeutics for non-human primate studies to protect them from SIV infection. These studies will help develop and evaluate therapeutics that may be used to control HIV-1 in humans.

National Institute of Health (NIH)
National Institute of Allergy and Infectious Diseases (NIAID)
Research Program Projects (P01)
Project #
Application #
Study Section
Special Emphasis Panel (ZAI1-RB-A)
Project Start
Project End
Budget Start
Budget End
Support Year
Fiscal Year
Total Cost
Indirect Cost
Scripps Florida
United States
Zip Code
Gessler, Dominic J; Li, Danning; Xu, Hongxia et al. (2017) Redirecting N-acetylaspartate metabolism in the central nervous system normalizes myelination and rescues Canavan disease. JCI Insight 2:e90807
Ai, Jianzhong; Tai, Phillip W L; Lu, Yi et al. (2017) Characterization of adenoviral transduction profile in prostate cancer cells and normal prostate tissue. Prostate 77:1265-1270
Li, Dongxiao; Liu, Chong; Yang, Chunxing et al. (2017) Slow Intrathecal Injection of rAAVrh10 Enhances its Transduction of Spinal Cord and Therapeutic Efficacy in a Mutant SOD1 Model of ALS. Neuroscience 365:192-205
Ai, Jianzhong; Li, Jia; Gessler, Dominic J et al. (2017) Adeno-associated virus serotype rh.10 displays strong muscle tropism following intraperitoneal delivery. Sci Rep 7:40336
Fellinger, Christoph H; Gardner, Matthew R; Bailey, Charles C et al. (2017) Simian Immunodeficiency Virus SIVmac239, but Not SIVmac316, Binds and Utilizes Human CD4 More Efficiently than Rhesus CD4. J Virol 91:
Gardner, Matthew R; Farzan, Michael (2017) Engineering antibody-like inhibitors to prevent and treat HIV-1 infection. Curr Opin HIV AIDS :
Xie, Jun; Mao, Qin; Tai, Phillip W L et al. (2017) Short DNA Hairpins Compromise Recombinant Adeno-Associated Virus Genome Homogeneity. Mol Ther 25:1363-1374
Davis-Gardner, Meredith E; Gardner, Matthew R; Alfant, Barnett et al. (2017) eCD4-Ig promotes ADCC activity of sera from HIV-1-infected patients. PLoS Pathog 13:e1006786
Tang, Maoxue; Gao, Guangping; Rueda, Carlos B et al. (2017) Brain microvasculature defects and Glut1 deficiency syndrome averted by early repletion of the glucose transporter-1 protein. Nat Commun 8:14152
Zhong, Guocai; Wang, Haimin; Li, Yujun et al. (2017) Cpf1 proteins excise CRISPR RNAs from mRNA transcripts in mammalian cells. Nat Chem Biol 13:839-841

Showing the most recent 10 out of 34 publications