The main objectives of the Vector Core are to provide high quality self-complementary (sc) and single-stranded (ss) rAAV1 vectors and serologically screen NHP animals suitable for rAAV1 anti-viral studies. We will accomplish these goals through the following specific aims:
Aim 1. To design, create, produce and quality control test scAAV1 vector lots at different scales with a variety of transgenes and expression cassettes to serve the specific needs of other investigators of this program project. More specifically, 120 rhesus macaques will be enrolled for different studies over 5 years and hundreds of mice will used for pre-macaque evaluation. In average, we estimate that 15-20 vector lots will be produced annually to meet the needs of those studies.
Aim 2. To screen NHP populations for pre-existing immunity against AAV1 by using both in vitro and in vivo neutralizing antibody (NAB) assays to select AAV1-NAB free animals for vaccine and therapeutic studies. Pre-screening of NHP population to select the animals without preexisting neutralizing antibody (NAB) to rAAV1 is essential for rAAV1-mediated anti-HIV immunoadhesin gene transfer. Our data suggested that the serological prevalence of primate-derived AAVs in NHP populations ranges from 60-80%. This implies that we may have to screen more than 360 animals to identify 120 animals free of AAV1 NAB.
Aim 3. To develop novel and scalable rAAV production method for larger scale translational NHP studies and future clinical development of rAAV1-based anti- HIV vaccine and therapeutics. Our current AAV production system should meet the vector needs in the early stage of this program project. However, large scale vector production may become a bottle neck for larger translational NHP studies and future clinical development as well. We will utilize our extensive experience in developing various vector packaging cell lines and infection-based vector production system to develop a 293 cell infection-based novel and scalable production method to overcome this limitation.

Public Health Relevance

The Vector Core focuses on design, production and QC testing of rAAV- based antiviral therapeutics for non-human primate studies to protect them from SIV infection. These studies will help develop and evaluate therapeutics that may be used to control HIV-1 in humans.

National Institute of Health (NIH)
National Institute of Allergy and Infectious Diseases (NIAID)
Research Program Projects (P01)
Project #
Application #
Study Section
Special Emphasis Panel (ZAI1-RB-A)
Project Start
Project End
Budget Start
Budget End
Support Year
Fiscal Year
Total Cost
Indirect Cost
Scripps Florida
United States
Zip Code
Martinez-Navio, José M; Fuchs, Sebastian P; Pedreño-López, Sònia et al. (2016) Host Anti-antibody Responses Following Adeno-associated Virus-mediated Delivery of Antibodies Against HIV and SIV in Rhesus Monkeys. Mol Ther 24:76-86
Gardner, Matthew R; Fellinger, Christoph H; Prasad, Neha R et al. (2016) CD4-Induced Antibodies Promote Association of the HIV-1 Envelope Glycoprotein with CD4-Binding Site Antibodies. J Virol 90:7822-32
Rashnonejad, Afrooz; Chermahini, Gholamhossein Amini; Li, Shaoyong et al. (2016) Large-Scale Production of Adeno-Associated Viral Vector Serotype-9 Carrying the Human Survival Motor Neuron Gene. Mol Biotechnol 58:30-6
Xie, Jun; Burt, Daniel Robert; Gao, Guangping (2015) Adeno-associated virus-mediated microRNA delivery and therapeutics. Semin Liver Dis 35:81-8
Wang, Dan; Mou, Haiwei; Li, Shaoyong et al. (2015) Adenovirus-Mediated Somatic Genome Editing of Pten by CRISPR/Cas9 in Mouse Liver in Spite of Cas9-Specific Immune Responses. Hum Gene Ther 26:432-42
Fuchs, Sebastian P; Martinez-Navio, José M; Piatak Jr, Michael et al. (2015) AAV-Delivered Antibody Mediates Significant Protective Effects against SIVmac239 Challenge in the Absence of Neutralizing Activity. PLoS Pathog 11:e1005090
Gardner, Matthew R; Kattenhorn, Lisa M; Kondur, Hema R et al. (2015) AAV-expressed eCD4-Ig provides durable protection from multiple SHIV challenges. Nature 519:87-91
Ahmed, Seemin S; Gao, Guangping (2015) Making the White Matter Matters: Progress in Understanding Canavan's Disease and Therapeutic Interventions Through Eight Decades. JIMD Rep 19:11-22
Wang, Dan; Gao, Guangping (2014) State-of-the-art human gene therapy: part I. Gene delivery technologies. Discov Med 18:67-77
Quinlan, Brian D; Joshi, Vinita R; Gardner, Matthew R et al. (2014) A double-mimetic peptide efficiently neutralizes HIV-1 by bridging the CD4- and coreceptor-binding sites of gp120. J Virol 88:3353-8

Showing the most recent 10 out of 22 publications