Osteoarthritis (OA) is a painful and debilitating disease of the synovial joints, affecting an estimated 21 million people in the United States. There is increasing evidence that local and systemic inflammatory cytokines such as interleukin 1 (IL-1) and inflammatory mediators such as free fatty acids, nitric oxide, or prostaglandins play a major role in OA pathogenesis and pain. Additionally, biomechanical loading plays an important role in the normal homeostatic maintenance of the cartilage extracellular matrix, and under abnormal conditions, mechanical stress may be a significant factor in the initiation and progression of OA. Our governing hypothesis is that obesity causes OA through synergistic interactions of dietary and systemic pro-inflammatory mediators, cytokines, and mechanical stress acting on the chondrocytes. The goal of this project is to examine the influence of dietary fatty acids on obesity-associated OA in mice, and to examine their interaction with altered biomechanical and pro-inflammatory cytokines using various in vivo and in vitro models. We propose that low-grade chronic systemic inflammation ? due to obesity or pro-inflammatory fatty acids in the diet ? acts in synergy with local inflammatory cytokines or altered mechanical loading (due to obesity or joint instability) to promote a state of inflammation and matrix degradation in the articular cartilage. We will pursue the following aims:
In Aim 1, we will examine the role of a high-fat (lard-based) diet in the development of OA in a leptin-receptor deficient mouse (db/db), and we will also measure osteoarthritic changes in diet-induced obese mice fed high-fat diets high in saturated and monounsaturated fatty acids, or omega-3 or omega-6 poly-unsaturated fatty acids.
In Aim 2, we will examine the effects of obesity (via high-fat diet or leptin deficiency) on the progression of OA in a destabilized medial meniscus model of mouse OA.
In Aim 3, we will use controlled in vitro models of cartilage explant loading to examine the effects of mechanical stress in combination with pro-inflammatory cytokines (e.g., IL-1, leptin, TNF-a) and fatty acids on the anabolic and catabolic activities of the chondrocytes, as measured by biomarker production, real-time PCR measurements of mRNA transcription, and protein synthesis of collagen II and aggrecan. Detailed studies of the interactions between specific biomechanical factors, pro-inflammatory mediators, and tissue metabolism in articular cartilage will improve our understanding of the pathology of the OA, particularly as it relates in vivo to """"""""biomechanical"""""""" factors such as obesity, injury, or weight loss. The results of this study will provide new insights into key elements of the pathogenesis of OA, and ultimately could lead to new treatments that exploit mechanical, psychosocial, and biochemical therapies to prevent disease.

Agency
National Institute of Health (NIH)
Institute
National Institute of Arthritis and Musculoskeletal and Skin Diseases (NIAMS)
Type
Research Program Projects (P01)
Project #
5P01AR050245-10
Application #
8379995
Study Section
Special Emphasis Panel (ZAR1-CHW-G)
Project Start
Project End
2013-12-31
Budget Start
2012-09-01
Budget End
2013-08-31
Support Year
10
Fiscal Year
2012
Total Cost
$329,732
Indirect Cost
$100,532
Name
Duke University
Department
Type
DUNS #
044387793
City
Durham
State
NC
Country
United States
Zip Code
27705
Brunger, Jonathan M; Zutshi, Ananya; Willard, Vincent P et al. (2017) Genome Engineering of Stem Cells for Autonomously Regulated, Closed-Loop Delivery of Biologic Drugs. Stem Cell Reports 8:1202-1213
Brunger, Jonathan M; Zutshi, Ananya; Willard, Vincent P et al. (2017) CRISPR/Cas9 Editing of Murine Induced Pluripotent Stem Cells for Engineering Inflammation-Resistant Tissues. Arthritis Rheumatol 69:1111-1121
Adkar, Shaunak S; Brunger, Jonathan M; Willard, Vincent P et al. (2017) Genome Engineering for Personalized Arthritis Therapeutics. Trends Mol Med 23:917-931
Taylor, Adam M; Hsueh, Ming-Feng; Ranganath, Lakshminarayan R et al. (2017) Cartilage biomarkers in the osteoarthropathy of alkaptonuria reveal low turnover and accelerated ageing. Rheumatology (Oxford) 56:156-164
Wu, Chia-Lung; Kimmerling, Kelly A; Little, Dianne et al. (2017) Serum and synovial fluid lipidomic profiles predict obesity-associated osteoarthritis, synovitis, and wound repair. Sci Rep 7:44315
Furman, Bridgette D; Kent, Collin L; Huebner, Janet L et al. (2017) CXCL10 is upregulated in synovium and cartilage following articular fracture. J Orthop Res :
Wu, Chia-Lung; McNeill, Jenna; Goon, Kelsey et al. (2017) Conditional Macrophage Depletion Increases Inflammation and Does Not Inhibit the Development of Osteoarthritis in Obese Macrophage Fas-Induced Apoptosis-Transgenic Mice. Arthritis Rheumatol 69:1772-1783
Hatcher, Courtney C; Collins, Amber T; Kim, Sophia Y et al. (2017) Relationship between T1rho magnetic resonance imaging, synovial fluid biomarkers, and the biochemical and biomechanical properties of cartilage. J Biomech 55:18-26
Rowland, Christopher R; Colucci, Lina A; Guilak, Farshid (2016) Fabrication of anatomically-shaped cartilage constructs using decellularized cartilage-derived matrix scaffolds. Biomaterials 91:57-72
Bowles, R D; Karikari, I O; VanDerwerken, D N et al. (2016) In vivo luminescent imaging of NF-?B activity and NF-?B-related serum cytokine levels predict pain sensitivities in a rodent model of peripheral neuropathy. Eur J Pain 20:365-76

Showing the most recent 10 out of 287 publications