This is a resubmitted PROGRAM PROJECT proposal following a thoughtful and supportive Review that has three separate research Projects that are supported by an Administrative Core and four technology Cores. The research Projects use state-of-the-art Tissue Engineering to address issues of articular cartilage repair. The entire proposal is centered on the theme of: Physical, Chemical and Biological Control of Tissue Engineered Cartilage. The approaches focus on cell-based technologies and are an outgrowth of over 20 years of experience in this investigative sector. All of the participants have previously interacted and the formation of this Program resulted from these formal and informal interactions. The long-term objective is to provide technologies that translate into clinically relevant protocols for cartilage repair. Thus, the integration of clinicians, cell and molecular scientists and engineers into a cohesive and interactive PROGRAM PROJECT team provides an effective and efficient mechanism for translating our scientific findings into clinical protocols. The three Projects are: I. Structured Microenvironment for Osteochondral Histogenesis;II. Biomimetic tissue-engineered articular cartilage repair and III. Total Joint Resurfacing. The four technology Cores provide cells (B), bioreactor capabilities (C), morphological processing and analysis (D), and Biomechanical analysis (E). The Administrative Core organizes the interactions between all Program participants and with outside Advisors who provide critical expertise to help guide the Program. Although each Project could stand alone, the open and frequent interactions of the participants adds substantial value both scientifically and clinically to the Program. Lastly, each of the technical Cores has both a service (to the Projects) and a research component that is relevant to the overall theme of the proposal.

Agency
National Institute of Health (NIH)
Institute
National Institute of Arthritis and Musculoskeletal and Skin Diseases (NIAMS)
Type
Research Program Projects (P01)
Project #
5P01AR053622-05
Application #
8309233
Study Section
Special Emphasis Panel (ZAR1-CHW-J (J1))
Program Officer
Wang, Fei
Project Start
2008-08-15
Project End
2014-04-30
Budget Start
2012-08-01
Budget End
2014-04-30
Support Year
5
Fiscal Year
2012
Total Cost
$1,117,152
Indirect Cost
$405,590
Name
Case Western Reserve University
Department
Biology
Type
Schools of Arts and Sciences
DUNS #
077758407
City
Cleveland
State
OH
Country
United States
Zip Code
44106
Correa, D; Somoza, R A; Lin, P et al. (2015) Sequential exposure to fibroblast growth factors (FGF) 2, 9 and 18 enhances hMSC chondrogenic differentiation. Osteoarthritis Cartilage 23:443-53
Chung, Chen-Yuan; Mansour, Joseph M (2015) Determination of poroelastic properties of cartilage using constrained optimization coupled with finite element analysis. J Mech Behav Biomed Mater 42:8-Oct
Song, In-Hwan; Dennis, James E (2014) Simple evaluation method for osteoinductive capacity of cells or scaffolds using ceramic cubes. Tissue Cell 46:372-8
Motavalli, Mostafa; Akkus, Ozan; Mansour, Joseph M (2014) Depth-dependent shear behavior of bovine articular cartilage: relationship to structure. J Anat 225:519-26
Mansour, Joseph M; Gu, Di-Win Marine; Chung, Chen-Yuan et al. (2014) Towards the feasibility of using ultrasound to determine mechanical properties of tissues in a bioreactor. Ann Biomed Eng 42:2190-202
Chou, Chih-Ling; Rivera, Alexander L; Sakai, Takao et al. (2013) Micrometer scale guidance of mesenchymal stem cells to form structurally oriented cartilage extracellular matrix. Tissue Eng Part A 19:1081-90
Corn, David J; Kim, Yunhui; Krebs, Melissa D et al. (2013) Imaging early stage osteogenic differentiation of mesenchymal stem cells. J Orthop Res 31:871-9
Chung, Chen-Yuan; Mansour, Joseph M (2013) Using regression models to determine the poroelastic properties of cartilage. J Biomech 46:1921-7
Rowland, Christopher R; Lennon, Donald P; Caplan, Arnold I et al. (2013) The effects of crosslinking of scaffolds engineered from cartilage ECM on the chondrogenic differentiation of MSCs. Biomaterials 34:5802-12
Mansour, Joseph M; Welter, Jean F (2013) Multimodal evaluation of tissue-engineered cartilage. J Med Biol Eng 33:1-16

Showing the most recent 10 out of 20 publications