Tumor suppressor gene networks act to limit the growth of malignant tumors and can influence the response of tumors to conventional and targeted anticancer agents. Project 6 (Tumor Suppression) is interested in uncovering innate tumor suppressive mechanisms involved in coupling proliferation to apoptotic cell death, and determining how mutations that disable these safeguards influence tumorigenesis. We previously used the adenoviral E1A protein to demonstrate how oncogene-induced apoptosis can be activated and executed through p53-dependent and independent mechanisms. More recently, we used mouse models to establish the importance of oncogene-induced apoptosis in tumor suppression, and identified key apoptotic regulators whose activation or disruption cooperates with Myc during tumorigenesis. In addition, our project has developed some powerful tools to probe tumor suppressor gene networks in vivo, including chimeric mouse models of lymphoma and hepatocellular carcinoma, and in vivo RNAi technology to suppress gene function in a stable or reversible manner. Moving forward, we will continue to explore the underlying mechanisms of oncogene-induced apoptosis in vivo, now taking a comparative approach that examines Myc-induced tumorigenesis in a lymphoid and epithelial cancer, and exploiting rapid methods for identifying and characterizing crucial genes in tumor suppressor networks in vivo. First, we will characterize p53-dependent and independent components of oncogene-induced apoptotic programs and determine how they impact tumorigenesis in distinct tumor types. Second, we will explore how deregulated survival signaling through the PIS kinase pathway or via altered translational control evades oncogene-induced apoptosis and promotes tumorigenesis. Third, we will use conditional RNA interference technology to determine the role of p53 and p53 mutations in tumor maintenance. Finally, we will conduct high throughput genetic screens to identify components of tumor suppressor networks whose disruption promotes tumorigenesis in vivo. By understanding how oncogenes engage the apoptotic network and how tumor cells escape this process, we hope to produce new insights into the workings of innate tumor suppressor mechanisms and identify new drug targets and therapeutic approaches.

National Institute of Health (NIH)
National Cancer Institute (NCI)
Research Program Projects (P01)
Project #
Application #
Study Section
Special Emphasis Panel (ZCA1)
Project Start
Project End
Budget Start
Budget End
Support Year
Fiscal Year
Total Cost
Indirect Cost
Cold Spring Harbor Laboratory
Cold Spring Harbor
United States
Zip Code
Li, Meng Amy; Amaral, Paulo P; Cheung, Priscilla et al. (2017) A lncRNA fine tunes the dynamics of a cell state transition involving Lin28, let-7 and de novo DNA methylation. Elife 6:
Diermeier, Sarah D; Spector, David L (2017) Antisense Oligonucleotide-mediated Knockdown in Mammary Tumor Organoids. Bio Protoc 7:
Pelossof, Raphael; Fairchild, Lauren; Huang, Chun-Hao et al. (2017) Prediction of potent shRNAs with a sequential classification algorithm. Nat Biotechnol 35:350-353
Roe, Jae-Seok; Hwang, Chang-Il; Somerville, Tim D D et al. (2017) Enhancer Reprogramming Promotes Pancreatic Cancer Metastasis. Cell 170:875-888.e20
Zhang, Bin; Mao, Yuntao S; Diermeier, Sarah D et al. (2017) Identification and Characterization of a Class of MALAT1-like Genomic Loci. Cell Rep 19:1723-1738
Mu, Ping; Zhang, Zeda; Benelli, Matteo et al. (2017) SOX2 promotes lineage plasticity and antiandrogen resistance in TP53- and RB1-deficient prostate cancer. Science 355:84-88
Anczuków, Olga; Krainer, Adrian R (2016) Splicing-factor alterations in cancers. RNA 22:1285-301
Baker, Leena; BeGora, Michael; Au Yeung, Faith et al. (2016) Scribble is required for pregnancy-induced alveologenesis in the adult mammary gland. J Cell Sci 129:2307-15
Tasdemir, Nilgun; Banito, Ana; Roe, Jae-Seok et al. (2016) BRD4 Connects Enhancer Remodeling to Senescence Immune Surveillance. Cancer Discov 6:612-29
Hossain, Manzar; Stillman, Bruce (2016) Opposing roles for DNA replication initiator proteins ORC1 and CDC6 in control of Cyclin E gene transcription. Elife 5:

Showing the most recent 10 out of 592 publications