This P01 was initiated in 1973 as a comprehensive effort to study the biology of blood and marrow transplantation (BMT). Since then, BMT has proven to be effective therapy, and even the treatment of choice, for a variety of malignant and nonmalignant diseases that affect the lymphohematopoietic system. A number of issues, including conditioning regimen toxicities, infections, graft-versus-host disease (GVHD), immunodeficiency, and inability to completely eradicate tumor, have limited the success of BMT over the years. Major advances, particularly in the area of supportive care, have gradually decreased the magnitude of many of these problems. However, two inter-related issues, GVHD and tumor recurrence, remain as major obstacles to successful allogeneic (allo) BMT. Translational studies funded by this P01 over the past decade have found that high-dose cyclophosphamide (Cy) early after BMT effectively generates bi-directional tolerance, even in partially HLA mismatched donor-recipient pairs in animals studies and clinically. Importantly, our clinical data demonstrating that haploidentical related donor BMT is safe and effective, producing results similar to that seen with HLA-matched alloBMT, was confirmed by a recent BMT CTN clinical trial. Additionally, although the importance of the cancer stem cell (CSC) concept has been a matter of debate because of limited data demonstrating clinical relevance, work over this P01's last funding period suggest that CSCs in a variety of hematologic malignancies are in fact the cells responsible for relapse. Accordingly, the new proposal will build on continuing work from the past funding period primarily in the areas of modulating GVHD with high-dose post-BMT Cy and targeting CSCs. Because of the effects of GVHD on relapse, the studies into modulating GVHD and targeting CSCs are highly interdependent with most Projects studying both areas. There are 5 interactive Projects and 3 Cores. The specific hypotheses to be tested in this proposal are: 1) high-dose post-transplant Cy's ability to modulate GVHD allows safe and effective mismatched BMT, making AlloBMT a feasible alternative for severe non-malignant hematologic diseases and allowing donor selection based on genetic factors other than HLA, 2)improved immunologic recovery after high-dose post-transplant Cy allows early and effective utilization of immunologic antitumor approaches, and 3) targeting CSC can decrease relapse after BMT.

Public Health Relevance

Two interrelated issues, GVHD and tumor recurrence, remain as major obstacles to successful allogeneic BMT. The renewal builds on, and expands, this P01's ongoing work in two major themes from the current funding period: 1) high-dose post-transplant Cy to modulate GVHD and 2) targeting CSC in an attempt to reduce relapse. Preliminary data suggest that advances in these two areas should improve the outcome of BMT patients.

National Institute of Health (NIH)
National Cancer Institute (NCI)
Research Program Projects (P01)
Project #
Application #
Study Section
Special Emphasis Panel (ZCA1-RPRB-B (J1))
Program Officer
Merritt, William D
Project Start
Project End
Budget Start
Budget End
Support Year
Fiscal Year
Total Cost
Indirect Cost
Johns Hopkins University
Internal Medicine/Medicine
Schools of Medicine
United States
Zip Code
Robinson, Tara M; O'Donnell, Paul V; Fuchs, Ephraim J et al. (2016) Haploidentical bone marrow and stem cell transplantation: experience with post-transplantation cyclophosphamide. Semin Hematol 53:90-7
Kanakry, Christopher G; Fuchs, Ephraim J; Luznik, Leo (2016) Modern approaches to HLA-haploidentical blood or marrow transplantation. Nat Rev Clin Oncol 13:10-24
Robinson, Tara M; Fuchs, Ephraim J (2016) Allogeneic stem cell transplantation for sickle cell disease. Curr Opin Hematol 23:524-529
DeZern, Amy E; Williams, Katherine; Zahurak, Marianna et al. (2016) Red blood cell transfusion triggers in acute leukemia: a randomized pilot study. Transfusion 56:1750-7
Gerber, Jonathan M; Zeidner, Joshua F; Morse, Sarah et al. (2016) Association of acute myeloid leukemia's most immature phenotype with risk groups and outcomes. Haematologica 101:607-16
Lombardi, Lindsey R; Kanakry, Christopher G; Zahurak, Marianna et al. (2016) Therapeutic drug monitoring for either oral or intravenous busulfan when combined with pre- and post-transplantation cyclophosphamide. Leuk Lymphoma 57:666-75
Gondek, L P; Zheng, G; Ghiaur, G et al. (2016) Donor cell leukemia arising from clonal hematopoiesis after bone marrow transplantation. Leukemia 30:1916-20
Kanakry, Christopher G; Coffey, David G; Towlerton, Andrea M H et al. (2016) Origin and evolution of the T cell repertoire after posttransplantation cyclophosphamide. JCI Insight 1:
Alonso, Salvador; Hernandez, Daniela; Chang, Yu-Ting et al. (2016) Hedgehog and retinoid signaling alters multiple myeloma microenvironment and generates bortezomib resistance. J Clin Invest 126:4460-4468
Kanakry, Christopher G; Fuchs, Ephraim J; Luznik, Leo (2016) Modern approaches to HLA-haploidentical blood or marrow transplantation. Nat Rev Clin Oncol 13:132

Showing the most recent 10 out of 436 publications