Protons have a physical dose advantage over photons (x-rays), the most commonly used type of radiation therapy for cancer patients, because they do not exit beyond the tumor target and thus irradiate less normal tissue. Irradiation of normal tissue yields no possible benefit for the patient;it can only increase the risk of treatment related side effects during and long after the end of treatment. While proton radiation therapy has been used in selective clinical sites with significant improvements in clinical outcome, we believe that research into better control of the finite range of the proton in the patient can yield additional clinical gains. The major objective of this project, Improving the Therapeutic Ratio of Proton Radiation Therapy in Challenging Clinical Sites, is to perform clinical trials employing improved control of the proton range in challenging clinical scenarios. We believe that these research advances should translate into further improvement in outcome in not only these particular diseases, but at multiple other anatomic sites where proton radiation therapy is increasingly being employed. The potential impact for public health is higher cancer cure rates and/or reduced treatment side effects, particularly in children, who are at the highest risk of late radiation therapy-induced side effects, which can be reduced with the use of protons.
The specific aims are to conduct phase II clinical studies in patients with unresectable liver tumors, pediatric medulloblastoma and rhabdomyosarcoma, spine and skull base sarcomas, and paranasal sinus tumors in which we will (1) use the end of range of the proton more effectively, (2) investigate the clinical use of magnetically scanned proton beams and intensity-modulated proton therapy, (3) confirm the tolerability and effectiveness of hypofractionated radiation dose escalation for unresectable liver tumors, (4) critically assess the importance of an adaptive proton radiation therapy strategy in response to tumor and normal tissue responses to radiation therapy in one anatomic site, and (5) compare treatment-related morbidity with photons and protons in these selected pediatric malignancies and in adult paranasal sinus tumors. The physical tools necessary to achieve these clinical goals will be investigated in Projects 3 and 4. The initial use of many of these physical tools in Project 2 will be important for their later use in Project 1, Proton Dose Escalation and Proton vs. Photon Randomized Trials for Non-Small Cell Lung Cancer.

Agency
National Institute of Health (NIH)
Institute
National Cancer Institute (NCI)
Type
Research Program Projects (P01)
Project #
5P01CA021239-34
Application #
8736216
Study Section
Special Emphasis Panel (ZCA1-RPRB-J (M1))
Project Start
1997-04-01
Project End
2014-07-31
Budget Start
2013-08-01
Budget End
2014-07-31
Support Year
34
Fiscal Year
2013
Total Cost
$204,107
Indirect Cost
$38,420
Name
Massachusetts General Hospital
Department
Type
DUNS #
073130411
City
Boston
State
MA
Country
United States
Zip Code
02199
Pulsifer, Margaret B; Duncanson, Haley; Grieco, Julie et al. (2018) Cognitive and Adaptive Outcomes After Proton Radiation for Pediatric Patients With Brain Tumors. Int J Radiat Oncol Biol Phys 102:391-398
Liao, Zhongxing; Lee, J Jack; Komaki, Ritsuko et al. (2018) Bayesian Adaptive Randomization Trial of Passive Scattering Proton Therapy and Intensity-Modulated Photon Radiotherapy for Locally Advanced Non-Small-Cell Lung Cancer. J Clin Oncol 36:1813-1822
Jeter, Melenda D; Gomez, Daniel; Nguyen, Quynh-Nhu et al. (2018) Simultaneous Integrated Boost for Radiation Dose Escalation to the Gross Tumor Volume With Intensity Modulated (Photon) Radiation Therapy or Intensity Modulated Proton Therapy and Concurrent Chemotherapy for Stage II to III Non-Small Cell Lung Cancer: A P Int J Radiat Oncol Biol Phys 100:730-737
Frank, Steven J; Blanchard, Pierre; Lee, J Jack et al. (2018) Comparing Intensity-Modulated Proton Therapy With Intensity-Modulated Photon Therapy for Oropharyngeal Cancer: The Journey From Clinical Trial Concept to Activation. Semin Radiat Oncol 28:108-113
Lin, Yu-Fen; Chen, Benjamin P; Li, Wende et al. (2018) The Relative Biological Effect of Spread-Out Bragg Peak Protons in Sensitive and Resistant Tumor Cells. Int J Part Ther 4:33-39
Ning, Matthew S; Tang, Linglong; Gomez, Daniel R et al. (2017) Incidence and Predictors of Pericardial Effusion After Chemoradiation Therapy for Locally Advanced Non-Small Cell Lung Cancer. Int J Radiat Oncol Biol Phys 99:70-79
Chang, Joe Y; Zhang, Wencheng; Komaki, Ritsuko et al. (2017) Long-term outcome of phase I/II prospective study of dose-escalated proton therapy for early-stage non-small cell lung cancer. Radiother Oncol 122:274-280
Sanford, Nina N; Yeap, Beow Y; Larvie, Mykol et al. (2017) Prospective, Randomized Study of Radiation Dose Escalation With Combined Proton-Photon Therapy for Benign Meningiomas. Int J Radiat Oncol Biol Phys 99:787-796
Taylor, Paige A; Kry, Stephen F; Followill, David S (2017) Pencil Beam Algorithms Are Unsuitable for Proton Dose Calculations in Lung. Int J Radiat Oncol Biol Phys 99:750-756
Yock, Torunn I; Yeap, Beow Y; Ebb, David H et al. (2016) Long-term toxic effects of proton radiotherapy for paediatric medulloblastoma: a phase 2 single-arm study. Lancet Oncol 17:287-98

Showing the most recent 10 out of 260 publications