Our understanding ofthe life cycles of EBV and HCMV has progressed so that we know much about their infections in tractable cell hosts including B-cells for EBV and fibroblasts for HCMV. We shall now focus on more technically demanding cell types central to the viral life cycles including epithelial cells for EBV and CD34+ cells for HCMV. EBV infects epithelial cells in vivo;it causes nasopharyngeal carcinomas, the undifferentiated form of which is uniformly EBV-positive. However, these tumors usually lose EBV upon explanting into cell culture. This loss may reflect EBV providing the tumor cells selective advantages that act only in vivo or for other unknown reasons. Conditions for infecting primary and established epithelial cells with EBV have recently been described, allowing a critical examination of EBV's life-cycle in them. We propose to characterize the dynamics of EBV visually in these tractable epithelial cells to elucidate how infections are established and maintained. In collaboration with Dr. Lambert in Project 1, we will assess the role of differentiation of epithelial cells in triggering EBV's lytic cycle. All of these experiments to visualize the life-cycle of EBV in epithelial cells will complement those to assess biochemically the latent to lytic switch in this cell type described in Project 4. We shall in parallel examine latent infections by HCMV, reactivation of which causes severe disease in the absence of a well-functioning immune system. At least one latent reservoir of HCMV is CD34+ hematopoietic progenitor cells. Primary CD34+ cells present experimental challenges such as heterogeneity and spontaneous differentiation, and thus our understanding of molecular mechanisms for the establishment, maintenance, and reactivation of HCMV latency is minimal. For example, unlike latent EBV, it is unclear if HCMV requires or even has mechanisms to replicate, maintain, and partition its genome within these cells. We have now infected established CD34+ cell lines and shown that they support latent infection of HCMV. We propose to characterize the dynamics of HCMV in these tractable CD34+ cells to elucidate how infections are established and maintained. Our collaborative studies of EBV and HCMV will use multiple approaches including live-cell imaging of visible derivatives of both viruses in these physiologically critical cell-types.

Public Health Relevance

EBV causes two kinds of carcinomas and HCMV both causes severe disease in immunocompromised patients and has been associated with glioblastoma multiforme. We have developed new techniques that allow us to study the life-cycles of these viruses in cell-types difficult to examine but critical for this pathogenesis. Our analysis of EBV and of HCMV with live-cell imaging will reveal how the viruses establish and maintain themselves in these pivotal cells and indicate how best to target them therapeutically.

Agency
National Institute of Health (NIH)
Institute
National Cancer Institute (NCI)
Type
Research Program Projects (P01)
Project #
5P01CA022443-37
Application #
8675201
Study Section
Special Emphasis Panel (ZCA1)
Project Start
Project End
Budget Start
2014-06-01
Budget End
2015-05-31
Support Year
37
Fiscal Year
2014
Total Cost
Indirect Cost
Name
University of Wisconsin Madison
Department
Type
DUNS #
City
Madison
State
WI
Country
United States
Zip Code
53715
Zumwalde, Nicholas A; Sharma, Akshat; Xu, Xuequn et al. (2017) Adoptively transferred V?9V?2 T cells show potent antitumor effects in a preclinical B cell lymphomagenesis model. JCI Insight 2:
Ma, Shi-Dong; Tsai, Ming-Han; Romero-Masters, James C et al. (2017) Latent Membrane Protein 1 (LMP1) and LMP2A Collaborate To Promote Epstein-Barr Virus-Induced B Cell Lymphomas in a Cord Blood-Humanized Mouse Model but Are Not Essential. J Virol 91:
Bilger, Andrea; Plowshay, Julie; Ma, Shidong et al. (2017) Leflunomide/teriflunomide inhibit Epstein-Barr virus (EBV)- induced lymphoproliferative disease and lytic viral replication. Oncotarget 8:44266-44280
Yang, Ya-Chun; Liem, Amy; Lambert, Paul F et al. (2017) Dissecting the regulation of EBV's BART miRNAs in carcinomas. Virology 505:148-154
Iwahori, Satoko; UmaƱa, Angie C; VanDeusen, Halena R et al. (2017) Human cytomegalovirus-encoded viral cyclin-dependent kinase (v-CDK) UL97 phosphorylates and inactivates the retinoblastoma protein-related p107 and p130 proteins. J Biol Chem 292:6583-6599
Wille, Coral K; Li, Yangguang; Rui, Lixin et al. (2017) Restricted TET2 Expression in Germinal Center Type B Cells Promotes Stringent Epstein-Barr Virus Latency. J Virol 91:
Chandra, Janin; Kuo, Paula T Y; Hahn, Anne M et al. (2017) Batf3 selectively determines acquisition of CD8+ dendritic cell phenotype and function. Immunol Cell Biol 95:215-223
Pocock, Ginger M; Zimdars, Laraine L; Yuan, Ming et al. (2017) Diverse activities of viral cis-acting RNA regulatory elements revealed using multicolor, long-term, single-cell imaging. Mol Biol Cell 28:476-487
Nowak, Karolin; Linzner, Daniela; Thrasher, Adrian J et al. (2017) Absence of ?-Chain in Keratinocytes Alters Chemokine Secretion, Resulting in Reduced Immune Cell Recruitment. J Invest Dermatol 137:2120-2130
Uberoi, Aayushi; Lambert, Paul F (2017) Rodent Papillomaviruses. Viruses 9:

Showing the most recent 10 out of 420 publications