Our understanding ofthe life cycles of EBV and HCMV has progressed so that we know much about their infections in tractable cell hosts including B-cells for EBV and fibroblasts for HCMV. We shall now focus on more technically demanding cell types central to the viral life cycles including epithelial cells for EBV and CD34+ cells for HCMV. EBV infects epithelial cells in vivo;it causes nasopharyngeal carcinomas, the undifferentiated form of which is uniformly EBV-positive. However, these tumors usually lose EBV upon explanting into cell culture. This loss may reflect EBV providing the tumor cells selective advantages that act only in vivo or for other unknown reasons. Conditions for infecting primary and established epithelial cells with EBV have recently been described, allowing a critical examination of EBV's life-cycle in them. We propose to characterize the dynamics of EBV visually in these tractable epithelial cells to elucidate how infections are established and maintained. In collaboration with Dr. Lambert in Project 1, we will assess the role of differentiation of epithelial cells in triggering EBV's lytic cycle. All of these experiments to visualize the life-cycle of EBV in epithelial cells will complement those to assess biochemically the latent to lytic switch in this cell type described in Project 4. We shall in parallel examine latent infections by HCMV, reactivation of which causes severe disease in the absence of a well-functioning immune system. At least one latent reservoir of HCMV is CD34+ hematopoietic progenitor cells. Primary CD34+ cells present experimental challenges such as heterogeneity and spontaneous differentiation, and thus our understanding of molecular mechanisms for the establishment, maintenance, and reactivation of HCMV latency is minimal. For example, unlike latent EBV, it is unclear if HCMV requires or even has mechanisms to replicate, maintain, and partition its genome within these cells. We have now infected established CD34+ cell lines and shown that they support latent infection of HCMV. We propose to characterize the dynamics of HCMV in these tractable CD34+ cells to elucidate how infections are established and maintained. Our collaborative studies of EBV and HCMV will use multiple approaches including live-cell imaging of visible derivatives of both viruses in these physiologically critical cell-types.

Public Health Relevance

EBV causes two kinds of carcinomas and HCMV both causes severe disease in immunocompromised patients and has been associated with glioblastoma multiforme. We have developed new techniques that allow us to study the life-cycles of these viruses in cell-types difficult to examine but critical for this pathogenesis. Our analysis of EBV and of HCMV with live-cell imaging will reveal how the viruses establish and maintain themselves in these pivotal cells and indicate how best to target them therapeutically.

National Institute of Health (NIH)
Research Program Projects (P01)
Project #
Application #
Study Section
Special Emphasis Panel (ZCA1)
Project Start
Project End
Budget Start
Budget End
Support Year
Fiscal Year
Total Cost
Indirect Cost
University of Wisconsin Madison
United States
Zip Code
Park, Jung Wook; Nickel, Kwangok P; Torres, Alexandra D et al. (2014) Human papillomavirus type 16 E7 oncoprotein causes a delay in repair of DNA damage. Radiother Oncol 113:337-44
Wang, Lu; Zhao, Zibo; Meyer, Mark B et al. (2014) CARM1 methylates chromatin remodeling factor BAF155 to enhance tumor progression and metastasis. Cancer Cell 25:21-36
Kuzembayeva, Malika; Hayes, Mitchell; Sugden, Bill (2014) Multiple functions are mediated by the miRNAs of Epstein-Barr virus. Curr Opin Virol 7:61-5
Wang, Joseph Che-Yen; Nickens, David G; Lentz, Thomas B et al. (2014) Encapsidated hepatitis B virus reverse transcriptase is poised on an ordered RNA lattice. Proc Natl Acad Sci U S A 111:11329-34
Stein, Andrew P; Saha, Sandeep; Yu, Menggang et al. (2014) Prevalence of human papillomavirus in oropharyngeal squamous cell carcinoma in the United States across time. Chem Res Toxicol 27:462-9
Iempridee, Tawin; Reusch, Jessica A; Riching, Andrew et al. (2014) Epstein-Barr virus utilizes Ikaros in regulating its latent-lytic switch in B cells. J Virol 88:4811-27
Park, J W; Shin, M-K; Lambert, P F (2014) High incidence of female reproductive tract cancers in FA-deficient HPV16-transgenic mice correlates with E7's induction of DNA damage response, an activity mediated by E7's inactivation of pocket proteins. Oncogene 33:3383-91
Shrestha, Prabha; Sugden, Bill (2014) Identification of properties of the Kaposi's sarcoma-associated herpesvirus latent origin of replication that are essential for the efficient establishment and maintenance of intact plasmids. J Virol 88:8490-503
Vereide, D T; Seto, E; Chiu, Y-F et al. (2014) Epstein-Barr virus maintains lymphomas via its miRNAs. Oncogene 33:1258-64
Son, Jieun; Park, Jung Wook; Lambert, Paul F et al. (2014) Requirement of estrogen receptor alpha DNA-binding domain for HPV oncogene-induced cervical carcinogenesis in mice. Carcinogenesis 35:489-96

Showing the most recent 10 out of 358 publications