Skin cancer is the most common malignancy in the world. One out of three new cancers is a skin cancer. More than 1 million cases of non-melanoma skin cancer (NMSC) (basal cell carcinoma [BCC] and squamous cell cancers [SCC]) occur annually. While the incidence rates for non-melanoma skin cancers continue to rise, there continues to be a substantial impact on morbidity, health and health care costs. The overall goal of this program project (PPG) is to employ novel technologies and develop new therapeutic strategies to eradicate intraepithelial neoplasias in the skin (i.e. actinic keratosis, squamous cell carcinoma in situ) and dramatically reduce the risk of squamous cell carcinoma of the skin. Since the key risk factors and signaling pathways in both melanoma and squamous cell skin cancers, appear linked, these strategies will also be tested for efficacy and safety in preclinical melanoma models. To achieve this goal, we will conduct a multilevel program of rational drug development, including: 1) the identification of the critical molecular targets in solar radiation signaling pathways of SCC and melanoma development;2) the identification of molecular pathways that contribute to altered terminal differentiation and barrier dysfunction in sun damaged skin involving actinic keratosis (AK) and in situ squamous cell carcinoma (SCIS);3) the selection of novel chemopreventive agents and synthesis of prodrugs that specifically """"""""hit"""""""" these molecular targets in SCC and melanoma mouse models and definitively interrupt their signaling pathways;4) the testing of the most promising target-specific agents and prodrugs in preclinical pharmacology and toxicology models required for Investigational New Drug (IND) registrations;and 5) to conduct phase 0, I, Ila and Ilb cancer prevention clinical trials of new IND-registered agents to prove chemopreventive safety, tolerability and efficacy. Knowledge of the key molecular targets in solar ultraviolet radiation signal transduction pathways and the development of multiple topically administered agents that can hit and eradicate these targets ultimately will allow for personalized medical approaches to SCC chemoprevention. A major theme of this PPG fits the scheme of Discovery Development and Delivery. While the three basic science projects continue the aims of identification (discovery) of UV signaling target pathways and agents that modulate these targets, the clinical project will undertake the development process of moving the agents showing efficacy in the SCC and melanoma mouse models into phase 0, 1, 2a and 2b human clinical trials. The delivery step occurs after agents demonstrate efficacy in 2b clinical trials. While this PPG will not take on the task of delivery by running phase III clinical trials, progress of earlier agents discovered and developed previously by the investigators involved in the proposed PPG have resulted in their commercialization, including Melanotan now licensed to the company Cinuvel and myristyl nicotinate(MN) licensed to the company Niadyne.

Public Health Relevance

Reducing the incidence of these dangerous cancers would not only reduce the potentially severe morbidity and mortality associated with these cancers, but also dramatically reduce the multibillion dollar heath bill associated with surgical and medical treatments required for melanoma and non-melanoma skin cancers.

National Institute of Health (NIH)
National Cancer Institute (NCI)
Research Program Projects (P01)
Project #
Application #
Study Section
Special Emphasis Panel (ZCA1-GRB-P (O1))
Program Officer
Malone, Winfred F
Project Start
Project End
Budget Start
Budget End
Support Year
Fiscal Year
Total Cost
Indirect Cost
University of Arizona
Internal Medicine/Medicine
Schools of Medicine
United States
Zip Code
Dickinson, Sally E; Janda, Jaroslav; Criswell, Jane et al. (2016) Inhibition of Akt Enhances the Chemopreventive Effects of Topical Rapamycin in Mouse Skin. Cancer Prev Res (Phila) 9:215-24
Peng, C; Zeng, W; Su, J et al. (2016) Cyclin-dependent kinase 2 (CDK2) is a key mediator for EGF-induced cell transformation mediated through the ELK4/c-Fos signaling pathway. Oncogene 35:1170-9
Janda, Jaroslav; Burkett, Nichole B; Blohm-Mangone, Karen et al. (2016) Resatorvid-based Pharmacological Antagonism of Cutaneous TLR4 Blocks UV-induced NF-κB and AP-1 Signaling in Keratinocytes and Mouse Skin. Photochem Photobiol 92:816-825
Franklin, Stephen J; Younis, Usir S; Myrdal, Paul B (2016) Estimating the Aqueous Solubility of Pharmaceutical Hydrates. J Pharm Sci 105:1914-9
Kim, J-E; Roh, E; Lee, M H et al. (2016) Fyn is a redox sensor involved in solar ultraviolet light-induced signal transduction in skin carcinogenesis. Oncogene 35:4091-101
Jeter, Joanne M; Curiel-Lewandrowski, Clara; Stratton, Steven P et al. (2016) Phase IIB Randomized Study of Topical Difluoromethylornithine and Topical Diclofenac on Sun-Damaged Skin of the Forearm. Cancer Prev Res (Phila) 9:128-34
Franklin, Stephen J; Myrdal, Paul B (2015) Solid-State and Solution Characterization of Myricetin. AAPS PharmSciTech 16:1400-8
Curiel-Lewandrowski, Clara; Tang, Jean Y; Einspahr, Janine G et al. (2015) Pilot study on the bioactivity of vitamin d in the skin after oral supplementation. Cancer Prev Res (Phila) 8:563-9
Kim, Jong-Eun; Son, Joe Eun; Jeong, Hyein et al. (2015) A Novel Cinnamon-Related Natural Product with Pim-1 Inhibitory Activity Inhibits Leukemia and Skin Cancer. Cancer Res 75:2716-28
Bermudez, Yira; Stratton, Steven P; Curiel-Lewandrowski, Clara et al. (2015) Activation of the PI3K/Akt/mTOR and MAPK Signaling Pathways in Response to Acute Solar-Simulated Light Exposure of Human Skin. Cancer Prev Res (Phila) 8:720-8

Showing the most recent 10 out of 378 publications