The Biomarkers Core contributes to the overall program project in the;a) collection of large numbers of biologic samples in support of Projects 1, 2, and 3, b) storage and archiving of all biologic samples, c) histologic services for the sectioning of tissue blocks in support of Projects 1, 2, and 3, d) pathology review of ail tissue samples (Projects 1, 2, and 3), d) standardization of sample acquisition, fixation and/or time to freezing, and sample storage, e) distribution of samples from Projects 1, 2, and 3 to co-Investigators/collaborators, in the case of assays done off-site, f) measurement of biomarker expression in skin biopsies (Projects 1, 2, and 3), and g) measurement of agent levels in blood and periodic quality control of agents developed for clinical application in support of Core D (Project 3). We have evaluated, analyzed, and optimized assays used in the Biomarker Core and have an extensive history of measurement of analytes in both plasma and serum. In collaboration with Biometry and Data Management (Core B), the Biomarker Core has carried out the sample analyses and interacted with each Project on the transfer and/or analysis of samples, as well as on the management and interpretation of the results. Assays provided by the Core will include immunohistochemical method development and analysis, karyometric sample preparation, as well as the measurement of agent levels in skin and blood. The Core has added a proteomic methodology, Reverse Phase Protein Microarray (RPMA), a novel application for multiplexed quantitative measurement of multiple signaling proteins, many of which are phosphoproteins, from biological specimens. RPMA represents a novel means of measurement of hundreds of proteins from a single specimen. A second novel methodology in this Program Project is quantitative Nuclease Protection Assay (qNPA), a method for mRNA analysis from small tissue sections of formalin fixed paraffin embedded (FFPE) samples of selected genes arrayed onto a platform. qNPA will be a developmental aim in the Program Project and each project selected specific genes to be arrayed onto this platform including genes associated with skin cells and their transition into cancer and metastasis. This highly interactive and clinically translational research program project focuses on the successful preclinical testing of targeted chemoprevention agents in innovative mouse models (Projects 1 and 2) followed by the design and implementation of clinical trials in at risk human populations (Project 3). Detailed descriptions of the decision-tree selection process as well as the interactions between Projects and Cores are found on the Resources Format Page.

Public Health Relevance

The overall goal of our Chemoprevention of Skin Cancer Program Project is to develop new strategies to eradicate intraepithelial neoplasias (lENs) in the skin and dramatically reduce the risk of nonmelanoma and melanoma skin cancers (NMSC),

National Institute of Health (NIH)
National Cancer Institute (NCI)
Research Program Projects (P01)
Project #
Application #
Study Section
Special Emphasis Panel (ZCA1-GRB-P)
Project Start
Project End
Budget Start
Budget End
Support Year
Fiscal Year
Total Cost
Indirect Cost
University of Arizona
United States
Zip Code
Dickinson, Sally E; Janda, Jaroslav; Criswell, Jane et al. (2016) Inhibition of Akt Enhances the Chemopreventive Effects of Topical Rapamycin in Mouse Skin. Cancer Prev Res (Phila) 9:215-24
Peng, C; Zeng, W; Su, J et al. (2016) Cyclin-dependent kinase 2 (CDK2) is a key mediator for EGF-induced cell transformation mediated through the ELK4/c-Fos signaling pathway. Oncogene 35:1170-9
Janda, Jaroslav; Burkett, Nichole B; Blohm-Mangone, Karen et al. (2016) Resatorvid-based Pharmacological Antagonism of Cutaneous TLR4 Blocks UV-induced NF-κB and AP-1 Signaling in Keratinocytes and Mouse Skin. Photochem Photobiol 92:816-825
Franklin, Stephen J; Younis, Usir S; Myrdal, Paul B (2016) Estimating the Aqueous Solubility of Pharmaceutical Hydrates. J Pharm Sci 105:1914-9
Kim, J-E; Roh, E; Lee, M H et al. (2016) Fyn is a redox sensor involved in solar ultraviolet light-induced signal transduction in skin carcinogenesis. Oncogene 35:4091-101
Jeter, Joanne M; Curiel-Lewandrowski, Clara; Stratton, Steven P et al. (2016) Phase IIB Randomized Study of Topical Difluoromethylornithine and Topical Diclofenac on Sun-Damaged Skin of the Forearm. Cancer Prev Res (Phila) 9:128-34
Franklin, Stephen J; Myrdal, Paul B (2015) Solid-State and Solution Characterization of Myricetin. AAPS PharmSciTech 16:1400-8
Curiel-Lewandrowski, Clara; Tang, Jean Y; Einspahr, Janine G et al. (2015) Pilot study on the bioactivity of vitamin d in the skin after oral supplementation. Cancer Prev Res (Phila) 8:563-9
Kim, Jong-Eun; Son, Joe Eun; Jeong, Hyein et al. (2015) A Novel Cinnamon-Related Natural Product with Pim-1 Inhibitory Activity Inhibits Leukemia and Skin Cancer. Cancer Res 75:2716-28
Bermudez, Yira; Stratton, Steven P; Curiel-Lewandrowski, Clara et al. (2015) Activation of the PI3K/Akt/mTOR and MAPK Signaling Pathways in Response to Acute Solar-Simulated Light Exposure of Human Skin. Cancer Prev Res (Phila) 8:720-8

Showing the most recent 10 out of 378 publications