Core A takes care of the tissue processing needs for all projects. It is directly supervised by Dr. Pelayo Correa and his assistant Dr. M. Blanca Piazuelo. In Nashville our personnel receive all biopsies from Colombia. Biopsies for histopathology evaluation are fixed immediately in buffered zinc-formalin, embedded in paraffin, sectioned and stained with hematoxylin eosin and modified Warthin- Starry silver stain. Biopsies for frozen sections are received in OCT and frozen immediately. The laboratory performs all immunohistochemical stains, including Ki67, TUNEL assays, inducible nitric oxide synthase, nitrotyrosine and a variety of white blood cell markers. Fully trained and experienced personnel are available for all procedures.

Public Health Relevance

The damage done by infection to the stomach lining is examined by taking small pieces (biopsies) of the mucosa with the gastroscope. These biopsies are processed by this core to be examined under the microscope by the investigators

National Institute of Health (NIH)
National Cancer Institute (NCI)
Research Program Projects (P01)
Project #
Application #
Study Section
Special Emphasis Panel (ZCA1-GRB-P)
Project Start
Project End
Budget Start
Budget End
Support Year
Fiscal Year
Total Cost
Indirect Cost
Vanderbilt University Medical Center
United States
Zip Code
Soutto, Mohammed; Peng, DunFa; Katsha, Ahmed et al. (2015) Activation of ?-catenin signalling by TFF1 loss promotes cell proliferation and gastric tumorigenesis. Gut 64:1028-39
Chaturvedi, R; de Sablet, T; Asim, M et al. (2015) Increased Helicobacter pylori-associated gastric cancer risk in the Andean region of Colombia is mediated by spermine oxidase. Oncogene 34:3429-40
Krakowiak, M S; Noto, J M; Piazuelo, M B et al. (2015) Matrix metalloproteinase 7 restrains Helicobacter pylori-induced gastric inflammation and premalignant lesions in the stomach by altering macrophage polarization. Oncogene 34:1865-71
Wei, Jinxiong; Noto, Jennifer M; Zaika, Elena et al. (2015) Bacterial CagA protein induces degradation of p53 protein in a p14ARF-dependent manner. Gut 64:1040-8
Wroblewski, Lydia E; Piazuelo, M Blanca; Chaturvedi, Rupesh et al. (2015) Helicobacter pylori targets cancer-associated apical-junctional constituents in gastroids and gastric epithelial cells. Gut 64:720-30
Kodaman, Nuri; Pazos, Alvaro; Schneider, Barbara G et al. (2014) Human and Helicobacter pylori coevolution shapes the risk of gastric disease. Proc Natl Acad Sci U S A 111:1455-60
Whary, Mark T; Muthupalani, Sureshkumar; Ge, Zhongming et al. (2014) Helminth co-infection in Helicobacter pylori infected INS-GAS mice attenuates gastric premalignant lesions of epithelial dysplasia and glandular atrophy and preserves colonization resistance of the stomach to lower bowel microbiota. Microbes Infect 16:345-55
Chaturvedi, Rupesh; Asim, Mohammad; Piazuelo, M Blanca et al. (2014) Activation of EGFR and ERBB2 by Helicobacter pylori results in survival of gastric epithelial cells with DNA damage. Gastroenterology 146:1739-51.e14
Hardbower, Dana M; Peek Jr, Richard M; Wilson, Keith T (2014) At the Bench: Helicobacter pylori, dysregulated host responses, DNA damage, and gastric cancer. J Leukoc Biol 96:201-12
Lertpiriyapong, Kvin; Whary, Mark T; Muthupalani, Sureshkumar et al. (2014) Gastric colonisation with a restricted commensal microbiota replicates the promotion of neoplastic lesions by diverse intestinal microbiota in the Helicobacter pylori INS-GAS mouse model of gastric carcinogenesis. Gut 63:54-63

Showing the most recent 10 out of 161 publications