MicroRNAs are predicted to regulate a majority of genes in human cells and both overexpression and loss of expression of some miRNAs are correlated with malignant phenotypes in different cancer cells. A decrease in miRNA activity is most commonly observed and may be important for the plasticity of tumor cells to undergo transitions between differentiation states and to grow in different niches.
In Aim 1 of this Project we plan to investigate

Public Health Relevance

Decreases in miRNA regulation are commonly observed in malignant cells. This probably confers plasticity to cancer cells permitting a greater range of developmental states and more diverse responses to stresses. Integrating the current understanding of miRNA regulation into the chain of events in vivo that results in a malignant cell is important. A greater understanding of the roles in cancer of the large family of non-coding RNAs could provide new opportunities for diagnosis and treatment.

Agency
National Institute of Health (NIH)
Institute
National Cancer Institute (NCI)
Type
Research Program Projects (P01)
Project #
2P01CA042063-26A1
Application #
8299784
Study Section
Special Emphasis Panel (ZCA1-RPRB-O (J1))
Project Start
1997-05-01
Project End
2017-05-31
Budget Start
2012-06-01
Budget End
2013-05-31
Support Year
26
Fiscal Year
2012
Total Cost
$818,083
Indirect Cost
$538,102
Name
Massachusetts Institute of Technology
Department
Type
DUNS #
001425594
City
Cambridge
State
MA
Country
United States
Zip Code
02139
Gosline, Sara J C; Gurtan, Allan M; JnBaptiste, Courtney K et al. (2016) Elucidating MicroRNA Regulatory Networks Using Transcriptional, Post-transcriptional, and Histone Modification Measurements. Cell Rep 14:310-9
Ferretti, Roberta; Bhutkar, Arjun; McNamara, Molly C et al. (2016) BMI1 induces an invasive signature in melanoma that promotes metastasis and chemoresistance. Genes Dev 30:18-33
Dimitrova, Nadya; Gocheva, Vasilena; Bhutkar, Arjun et al. (2016) Stromal Expression of miR-143/145 Promotes Neoangiogenesis in Lung Cancer Development. Cancer Discov 6:188-201
Zhang, Xiaochang; Chen, Ming Hui; Wu, Xuebing et al. (2016) Cell-Type-Specific Alternative Splicing Governs Cell Fate in the Developing Cerebral Cortex. Cell 166:1147-1162.e15
Danielian, Paul S; Hess, Rex A; Lees, Jacqueline A (2016) E2f4 and E2f5 are essential for the development of the male reproductive system. Cell Cycle 15:250-60
Li, Carman Man-Chung; Gocheva, Vasilena; Oudin, Madeleine J et al. (2015) Foxa2 and Cdx2 cooperate with Nkx2-1 to inhibit lung adenocarcinoma metastasis. Genes Dev 29:1850-62
Parisi, T; Bronson, R T; Lees, J A (2015) Inactivation of the retinoblastoma gene yields a mouse model of malignant colorectal cancer. Oncogene 34:5890-9
Li, Yingxiang; Park, Angela I; Mou, Haiwei et al. (2015) A versatile reporter system for CRISPR-mediated chromosomal rearrangements. Genome Biol 16:111
Boutz, Paul L; Bhutkar, Arjun; Sharp, Phillip A (2015) Detained introns are a novel, widespread class of post-transcriptionally spliced introns. Genes Dev 29:63-80
Ran, F Ann; Cong, Le; Yan, Winston X et al. (2015) In vivo genome editing using Staphylococcus aureus Cas9. Nature 520:186-91

Showing the most recent 10 out of 202 publications