The overall cellular response to ionizing radiation exposure is not limited to cells directly irradiated, but includes neighboring "bystanders". Essentially every endpoint used routinely to test for changes in cells directly exposed to radiation, such as mutation, apoptosis, micronuclei formation or cell cycle checkpoints, has been studied in bystanders. This phenomenon has caused a paradigm shift in thinking about biological effects and associated health risks of radiafion exposure;the impacted cell population is larger than once believed. The mechanism regulating bystander effects is not well understood. However, certain gap junction proteins, i.e., Connexin 32, and proteins like Cox-2 control the overall process, whereas p21 just regulates the radiation-induced Gl to S checkpoint. We have shown that Rad9 regulates the bystander response to radiation, since Rad9 null enhances bystander apoptosis and micronuclei formation. Rad9 protein, which controls cell cycle checkpoints, DNA repair, apoptosis and transactivation of downstream target genes in directly irradiated cells, likely impacts on the bystander response via more than one pathway. In collaboration with investigators in Projects 2 and 3, we show that Rad9 is essential for bystander induction of Cox-2 and p21 (Project 2), and production of Connexin 32 in HeLa cells, which are normally devoid of the protein, increases bystander radiation resistance and levels of Rad9 as well as TCTP (Project 3), which both function in the bystander process. We also show that TCTP and Rad9 physically interact (Project 3). Our overarching hypothesis is that Rad9 plays an important role in radiation-induced bystander effects via mechanisms involving at least Cox-2, p2I, Connexin 32 and TCTP.
Specific aims to address this hypothesis are: I. Determine the activity of Rad9 in nuclear versus cytoplasmic irradiation-induced bystander effects;2. Analyze Rad9 functional domains and protein-protein interactions for roles in the bystander process;3. Establish the significance of Rad9-dependent bystander induction of Cox-2, p21 and other genes for bystander regulation;4. Determine if Rad9 is critical for bystander mutagenesis;and 5. Define the significance of junctional communication on the regulation and function of Rad9. These studies will reveal mechanisms by which Rad9 regulates radiation-induced bystander effects, and will impact on understanding the biological response to radiation exposure, with implications for improving radiotherapy and better defining health risk.

Public Health Relevance

): It is now established that the effects of radiation exposure extend well beyond directly targeted cells or tissues, and involve neighboring bystanders. The molecular basis for this paradigm shift in thinking is not well understood, and is the focus of this proposal. Understanding the bystander response will impact on radiotherapy and health risk assessment, where radiation exposure is a crucial component.

Agency
National Institute of Health (NIH)
Institute
National Cancer Institute (NCI)
Type
Research Program Projects (P01)
Project #
5P01CA049062-22
Application #
8494415
Study Section
Special Emphasis Panel (ZCA1-RPRB-0)
Project Start
Project End
Budget Start
2013-07-01
Budget End
2014-06-30
Support Year
22
Fiscal Year
2013
Total Cost
$317,793
Indirect Cost
$91,241
Name
Columbia University (N.Y.)
Department
Type
DUNS #
621889815
City
New York
State
NY
Country
United States
Zip Code
10032
Zhang, Bo; Davidson, Mercy M; Hei, Tom K (2014) Mitochondria regulate DNA damage and genomic instability induced by high LET radiation. Life Sci Space Res (Amst) 1:80-88
Broustas, Constantinos G; Lieberman, Howard B (2014) DNA damage response genes and the development of cancer metastasis. Radiat Res 181:111-30
Luo, Xiuquan; Suzuki, Masatoshi; Ghandhi, Shanaz A et al. (2014) ATM regulates insulin-like growth factor 1-secretory clusterin (IGF-1-sCLU) expression that protects cells against senescence. PLoS One 9:e99983
Broustas, Constantinos G; Lieberman, Howard B (2014) RAD9 enhances radioresistance of human prostate cancer cells through regulation of ITGB1 protein levels. Prostate 74:1359-70
Ivanov, Vladimir N; Hei, Tom K (2014) Radiation-induced glioblastoma signaling cascade regulates viability, apoptosis and differentiation of neural stem cells (NSC). Apoptosis 19:1736-54
Li, Min; Gonon, Geraldine; Buonanno, Manuela et al. (2014) Health risks of space exploration: targeted and nontargeted oxidative injury by high-charge and high-energy particles. Antioxid Redox Signal 20:1501-23
Zhao, Y; de Toledo, S M; Hu, G et al. (2014) Connexins and cyclooxygenase-2 crosstalk in the expression of radiation-induced bystander effects. Br J Cancer 111:125-31
Shim, Grace; Ricoul, Michelle; Hempel, William M et al. (2014) Crosstalk between telomere maintenance and radiation effects: A key player in the process of radiation-induced carcinogenesis. Mutat Res Rev Mutat Res :
Ghandhi, Shanaz A; Ponnaiya, Brian; Panigrahi, Sunil K et al. (2014) RAD9 deficiency enhances radiation induced bystander DNA damage and transcriptomal response. Radiat Oncol 9:206
Ivanov, Vladimir N; Hei, Tom K (2014) A role for TRAIL/TRAIL-R2 in radiation-induced apoptosis and radiation-induced bystander response of human neural stem cells. Apoptosis 19:399-413

Showing the most recent 10 out of 185 publications