Radiation-induced bystander/non-targeted responses have been postulated to impact the estimation of health risks of exposure to ionizing radiation. Several mechanisms have been suggested to mediate the induced bystander effect. Among them, gap-junction communication has been shown to be a critical mediator. However, the aspects of junctional communication that affect propagation of radiation effects remain undefined. Using in vivo analytic approaches, the goal of this proposal is to exploit fundamental knowledge on permeability properties of gap junction proteins (connexins) to investigate the role of different connexins in propagating death-inducing (growth delay, apoptosis) or pro-survival effects (proliferative capacity) between irradiated and neighboring bystander tumor or normal cells. The central hypothesis is that the in vivo cellular microenvironment modulates gap-junction gating, and thereby propagation of biological effects between irradiated and bystander cells. These events are modulated by oxidative metabolism and DNA repair, and result in transient and persistent changes in affected bystander cells and their progeny. In four interrelated specific aims, we propose to investigate, in vivo, the effects of selective properties of connexin 26, connexin 32 and connexin 43 channels on the proliferative capacity of irradiated and bystander human cells. We will determine the effects of cyclooxygenase-2 (COX-2) signaling on the gap junction permeabilities that mediate the expression of bystander effects. We will also examine intercellular communication that may result in regulation of the DNA repair and checkpoint proteins, Rad9 and Translationally Controlled Tumor Protein (TCTP), in bystander cells. We will adapt novel technology to identify signaling metabolites transmitted between irradiated and bystander cells that lead to regulation of TCTP and Rad9 in bystander cells. With relevance to long term health risks, we will examine, in normal cells, altered signaling pathways and genomic instability in the progeny of surviving bystander cells. The proposed experiments build on in vitro preliminary data that integrate the 3 projects of this program together. These data unraveled novel in vivo interactions between connexins, TCTP, Rad9 and COX-2, and showed that signaling events mediated through intercellular communication promote these interactions.

Public Health Relevance

The expression of bystander effects may impact the estimation of health risks of exposure to low doses of radiation from. diagnostic procedures and high doses received during therapy. By understanding the mechanisms underlying the role of intercellular communication in propagation of radiation-induced stressful effects, the outcome of this proposal may provide insight into potentiating the benefits of cancer radiotherapy by enhancing its killing effects and protecting against the propagation of damaging effects to healthy tissue.

Agency
National Institute of Health (NIH)
Institute
National Cancer Institute (NCI)
Type
Research Program Projects (P01)
Project #
5P01CA049062-23
Application #
8693583
Study Section
Special Emphasis Panel (ZCA1)
Project Start
Project End
Budget Start
2014-07-01
Budget End
2015-06-30
Support Year
23
Fiscal Year
2014
Total Cost
Indirect Cost
Name
Columbia University (N.Y.)
Department
Type
DUNS #
City
New York
State
NY
Country
United States
Zip Code
Azzam, Edouard I; Colangelo, Nicholas W; Domogauer, Jason D et al. (2016) Is Ionizing Radiation Harmful at any Exposure? An Echo That Continues to Vibrate. Health Phys 110:249-51
Gong, Xuezhong; Ivanov, Vladimir N; Hei, Tom K (2016) 2,3,5,6-Tetramethylpyrazine (TMP) down-regulated arsenic-induced heme oxygenase-1 and ARS2 expression by inhibiting Nrf2, NF-κB, AP-1 and MAPK pathways in human proximal tubular cells. Arch Toxicol 90:2187-200
Hei, Tom K (2016) Response of Biological Systems to Low Doses of Ionizing Radiation. Health Phys 110:281-2
Panigrahi, Sunil K; Hopkins, Kevin M; Lieberman, Howard B (2015) Regulation of NEIL1 protein abundance by RAD9 is important for efficient base excision repair. Nucleic Acids Res 43:4531-46
Autsavapromporn, Narongchai; Plante, Ianik; Liu, Cuihua et al. (2015) Genetic changes in progeny of bystander human fibroblasts after microbeam irradiation with X-rays, protons or carbon ions: the relevance to cancer risk. Int J Radiat Biol 91:62-70
Brengues, Muriel; Gu, Jian; Zenhausern, Frederic (2015) Microfluidic module for blood cell separation for gene expression radiobiological assays. Radiat Prot Dosimetry 166:306-10
Wang, Tony J C; Wu, Cheng-Chia; Chai, Yunfei et al. (2015) Induction of Non-Targeted Stress Responses in Mammary Tissues by Heavy Ions. PLoS One 10:e0136307
Gong, Xuezhong; Ivanov, Vladimir N; Davidson, Mercy M et al. (2015) Tetramethylpyrazine (TMP) protects against sodium arsenite-induced nephrotoxicity by suppressing ROS production, mitochondrial dysfunction, pro-inflammatory signaling pathways and programed cell death. Arch Toxicol 89:1057-70
Chen, Hongxin; Goodus, Matthew T; de Toledo, Sonia M et al. (2015) Ionizing Radiation Perturbs Cell Cycle Progression of Neural Precursors in the Subventricular Zone Without Affecting Their Long-Term Self-Renewal. ASN Neuro 7:
Dong, Chen; He, Mingyuan; Tu, Wenzhi et al. (2015) The differential role of human macrophage in triggering secondary bystander effects after either gamma-ray or carbon beam irradiation. Cancer Lett 363:92-100

Showing the most recent 10 out of 211 publications