The Technical Core has and continues to play a central role in this Program Project. In the context of the overall Program Project themes, the Technical Core acts as an integrative tool to facilitate consistent experimental design and data analyses, across the three projects, as well as providing microbeam irradiation facilities. There are five main Core functions for this Technical Core: 1. Provide experimental design support based on Monte Carlo simulation for the three projects, to optimize resource utilization for resource-intensive experiments. 2. Provide consistent and rigorous statistical and data analysis support. 3. Obtaining and interpreting global gene-expression data. 4. Support for the POl-related operations ofthe accelerator-based single-cell / single-particle microbeam, and track-segment charged-particle irradiations. 5. Provide expertise in the design and fabrication of special irradiation fixtures, through the Center for Radiological Research Instrument Shop.

Public Health Relevance

The overall objectives of this program project application are to define and characterize the mechanisms of the bystander effect, and probe its implications. Three well linked, fully integrated projects are proposed to address these issues, and will be supported by the five key functions ofthe Technical Core.

Agency
National Institute of Health (NIH)
Type
Research Program Projects (P01)
Project #
5P01CA049062-23
Application #
8693585
Study Section
Special Emphasis Panel (ZCA1)
Project Start
Project End
Budget Start
Budget End
Support Year
23
Fiscal Year
2014
Total Cost
Indirect Cost
Name
Columbia University (N.Y.)
Department
Type
DUNS #
City
New York
State
NY
Country
United States
Zip Code
10032
Azzam, Edouard I; Colangelo, Nicholas W; Domogauer, Jason D et al. (2016) Is Ionizing Radiation Harmful at any Exposure? An Echo That Continues to Vibrate. Health Phys 110:249-51
Gong, Xuezhong; Ivanov, Vladimir N; Hei, Tom K (2016) 2,3,5,6-Tetramethylpyrazine (TMP) down-regulated arsenic-induced heme oxygenase-1 and ARS2 expression by inhibiting Nrf2, NF-κB, AP-1 and MAPK pathways in human proximal tubular cells. Arch Toxicol 90:2187-200
Hei, Tom K (2016) Response of Biological Systems to Low Doses of Ionizing Radiation. Health Phys 110:281-2
Panigrahi, Sunil K; Hopkins, Kevin M; Lieberman, Howard B (2015) Regulation of NEIL1 protein abundance by RAD9 is important for efficient base excision repair. Nucleic Acids Res 43:4531-46
Autsavapromporn, Narongchai; Plante, Ianik; Liu, Cuihua et al. (2015) Genetic changes in progeny of bystander human fibroblasts after microbeam irradiation with X-rays, protons or carbon ions: the relevance to cancer risk. Int J Radiat Biol 91:62-70
Brengues, Muriel; Gu, Jian; Zenhausern, Frederic (2015) Microfluidic module for blood cell separation for gene expression radiobiological assays. Radiat Prot Dosimetry 166:306-10
Wang, Tony J C; Wu, Cheng-Chia; Chai, Yunfei et al. (2015) Induction of Non-Targeted Stress Responses in Mammary Tissues by Heavy Ions. PLoS One 10:e0136307
Gong, Xuezhong; Ivanov, Vladimir N; Davidson, Mercy M et al. (2015) Tetramethylpyrazine (TMP) protects against sodium arsenite-induced nephrotoxicity by suppressing ROS production, mitochondrial dysfunction, pro-inflammatory signaling pathways and programed cell death. Arch Toxicol 89:1057-70
Chen, Hongxin; Goodus, Matthew T; de Toledo, Sonia M et al. (2015) Ionizing Radiation Perturbs Cell Cycle Progression of Neural Precursors in the Subventricular Zone Without Affecting Their Long-Term Self-Renewal. ASN Neuro 7:
Dong, Chen; He, Mingyuan; Tu, Wenzhi et al. (2015) The differential role of human macrophage in triggering secondary bystander effects after either gamma-ray or carbon beam irradiation. Cancer Lett 363:92-100

Showing the most recent 10 out of 211 publications