Allogeneic hematopoietic cell transplantation (HCT) is an established therapy for a broad range of hematologic malignancies and other disorders. A major limitation of allogeneic HCT Is graft vs host disease (GVHD) caused by alloimmune lymphocytes of the donor recognizing host antigens. GVHD can be characterized as a robust, dysregulated immune response resulting in tissue destruction and ultimately mortality in the most severe forms. Prior work in our laboratory has utilized a novel bioluminescent imaging (BLl) approach to understand the early events in GVHD pathophysiology whereby donor derived T cells migrate to secondary nodal sites and actively proliferate. In these tissues conventional CD4+ and CD8+ T (Tcon) cells up-regulate homing receptors that allow entry into GVHD target organs such as the skin, gastrointestinal tract, liver and immune tissues such as lymph nodes and the thymus. Controlling this robust Immunological reaction is difficult both in murine models and in patients. Recently we have discovered that immune regulatory T cells are capable of controlling GVHD pathophysiology without interfering with graft vs tumor (GVT) reactions and resulting in more effective immune reconstitution due to preservation of immune tissues required for effective immune reconstitution. We have studied both CD4+CD25+FoxP3+ regulatory T cells (Treg) and alpha/betaTCR+CD4+NK1.1+ natural killer T (NK-T) cells. Using BLl and other techniques we have observed that Treg control GVHD by inhibiting Tcon proliferation whereas NK-T cells function through an alternative mechanism. In this Project we will utilize novel animal models and TCR sequencing technologies to explore the biological basis of T cell activation in GVHD and GVT in Specific Aim #1.
In Specific Aim #2 we will compare the impact of Treg and NK-T cells on Tcon proliferation, phenotype and function.
Specific Aim #3 will translate these findings in a clinical trial of allogeneic HCT in patients with high risk malignancies who will receive a CD34+ cell selected graft followed by Treg and Tcon infusion in an effort to reduce GVHD while maintaining GVT and improving immune reconstitution.

Public Health Relevance

This project addresses the biological basis of GVHD induction by alloreactive T cells and the impact of regulatory T cell populations known to control this clinically relevant immune reaction. We hope to gain important biological insights into immune reactions including GVHD and GVT, as well as the function of regulatory T cell populations. Further, we will translate these findings to the clinic to improve upon allogeneic HCT by reducing GVHD risk, maintaining GVT and resulting in more effective immune reconstitution.

National Institute of Health (NIH)
National Cancer Institute (NCI)
Research Program Projects (P01)
Project #
Application #
Study Section
Project Start
Project End
Budget Start
Budget End
Support Year
Fiscal Year
Total Cost
Indirect Cost
Stanford University
United States
Zip Code
Sen, Nandini; Arvin, Ann M (2016) Dissecting the Molecular Mechanisms of the Tropism of Varicella-Zoster Virus for Human T Cells. J Virol 90:3284-7
Pierini, Antonio; Alvarez, Maite; Negrin, Robert S (2016) NK Cell and CD4+FoxP3+ Regulatory T Cell Based Therapies for Hematopoietic Stem Cell Engraftment. Stem Cells Int 2016:9025835
Khodadoust, M S; Luo, B; Medeiros, B C et al. (2016) Clinical activity of ponatinib in a patient with FGFR1-rearranged mixed-phenotype acute leukemia. Leukemia 30:947-50
Xu, Lian; Hunter, Zachary R; Tsakmaklis, Nicholas et al. (2016) Clonal architecture of CXCR4 WHIM-like mutations in Waldenström Macroglobulinaemia. Br J Haematol 172:735-44
Pierini, Antonio; Strober, William; Moffett, Caitlin et al. (2016) TNF-α priming enhances CD4+FoxP3+ regulatory T-cell suppressive function in murine GVHD prevention and treatment. Blood 128:866-71
Nakasone, Hideki; Sahaf, Bita; Tian, Lu et al. (2016) Presensitization to HY antigens in female donors prior to transplant is not associated with male recipient post-transplant HY antibody development nor with clinical outcomes. Haematologica 101:e30-3
Pierini, Antonio; Colonna, Lucrezia; Alvarez, Maite et al. (2015) Donor Requirements for Regulatory T Cell Suppression of Murine Graft-versus-Host Disease. J Immunol 195:347-55
Ohgami, Robert S; Ma, Lisa; Merker, Jason D et al. (2015) Next-generation sequencing of acute myeloid leukemia identifies the significance of TP53, U2AF1, ASXL1, and TET2 mutations. Mod Pathol 28:706-14
Nakasone, Hideki; Remberger, Mats; Tian, Lu et al. (2015) Risks and benefits of sex-mismatched hematopoietic cell transplantation differ according to conditioning strategy. Haematologica 100:1477-85
Kelley, Todd W; Arber, Daniel A; Gibson, Christine et al. (2015) Template for Reporting Results of Monitoring Tests for Patients With Chronic Myelogenous Leukemia (BCR-ABL1(+)). Arch Pathol Lab Med :

Showing the most recent 10 out of 292 publications