The study of DNA tumor viruses that transform rodent and human cells has led to a greater understanding of the molecular events that program the malignant state. In particular, investigation of the viral oncoproteins specified by the Simian Virus 40 Early Region (SV40 ER) has revealed host cell pathways, whose perturbation play an essential role in the transformation of mammalian cells. Over the last several years, we have focused on the role of the SV40 small t antigen (SV40ST) in human cell transformation. During the last funding period, we have confirmed that the interaction between SV40ST and PP2A contributes directly to human cell transformation. In addition, we have found that the perturbation of PP2A by SV40ST transforms human cells in a manner similar to that induced by cancer-associated mutations of PP2A subunits. These observations identify PP2A as a tumor suppressor in human cancers and suggest that a deeper understanding of the mechanisms by which SV40ST perturbs PP2A function will provide additional insights into tumor initiation and maintenance. In order to understand further the role(s) of PP2A in cell transformation, we propose to combine genetic, biochemical and cell biological approaches to characterize the PP2A complexes involved in cell transformation, to identify the role(s) of RalA in cancer development and to elucidate the molecular pathways perturbed by SV40ST and PP2A in human cell transformation. Investigating the regulation and function of PP2A in cancer development will not only enhance our mechanistic understanding of this tumor suppressor family but will also provide new insights into the pathways that help program the malignant state. In addition, these studies will provide a foundation for strategies to target these pathways therapeutically.

Agency
National Institute of Health (NIH)
Institute
National Cancer Institute (NCI)
Type
Research Program Projects (P01)
Project #
5P01CA050661-25
Application #
8448548
Study Section
Special Emphasis Panel (ZCA1-GRB-S)
Project Start
Project End
Budget Start
2013-04-01
Budget End
2014-03-31
Support Year
25
Fiscal Year
2013
Total Cost
$302,520
Indirect Cost
$92,651
Name
Dana-Farber Cancer Institute
Department
Type
DUNS #
076580745
City
Boston
State
MA
Country
United States
Zip Code
02215
Becker, Jürgen C; Stang, Andreas; Hausen, Axel Zur et al. (2018) Epidemiology, biology and therapy of Merkel cell carcinoma: conclusions from the EU project IMMOMEC. Cancer Immunol Immunother 67:341-351
Becker, Jürgen C; Stang, Andreas; DeCaprio, James A et al. (2017) Merkel cell carcinoma. Nat Rev Dis Primers 3:17077
Denis, Deborah; Rouleau, Cecile; Schaffhausen, Brian S (2017) A Transformation-Defective Polyomavirus Middle T Antigen with a Novel Defect in PI3 Kinase Signaling. J Virol 91:
Starrett, Gabriel J; Marcelus, Christina; Cantalupo, Paul G et al. (2017) Merkel Cell Polyomavirus Exhibits Dominant Control of the Tumor Genome and Transcriptome in Virus-Associated Merkel Cell Carcinoma. MBio 8:
Cizmecioglu, Onur; Ni, Jing; Xie, Shaozhen et al. (2016) Rac1-mediated membrane raft localization of PI3K/p110? is required for its activation by GPCRs or PTEN loss. Elife 5:
Rouleau, Cecile; Pores Fernando, Arun T; Hwang, Justin H et al. (2016) Transformation by Polyomavirus Middle T Antigen Involves a Unique Bimodal Interaction with the Hippo Effector YAP. J Virol 90:7032-7045
Pores Fernando, A T; Andrabi, S; Cizmecioglu, O et al. (2015) Polyoma small T antigen triggers cell death via mitotic catastrophe. Oncogene 34:2483-92
Berrios, Christian; Jung, Joonil; Primi, Blake et al. (2015) Malawi polyomavirus is a prevalent human virus that interacts with known tumor suppressors. J Virol 89:857-62
Luo, Leo Y; Kim, Eejung; Cheung, Hiu Wing et al. (2015) The Tyrosine Kinase Adaptor Protein FRS2 Is Oncogenic and Amplified in High-Grade Serous Ovarian Cancer. Mol Cancer Res 13:502-9
Hettmer, Simone; Schinzel, Anna C; Tchessalova, Daria et al. (2015) Functional genomic screening reveals asparagine dependence as a metabolic vulnerability in sarcoma. Elife 4:

Showing the most recent 10 out of 147 publications