Recent observations have suggested that the viral oncoproteins SV40 Large T antigen (SV40LT) and Adenovirus E1A play a direct role in transactivation of E2F-dependent genes to promote cell cycle entry. We propose that SV40LT transformation is dependent on its ability to directly transactivate E2F-dependent promoters by binding to chromatin-bound Rb, p107 and p130, thereby recruiting CBP and p300 to activate E2F transcription. In addition, our understanding of how the Rb family controls E2F-dependent gene expression has continued to evolve. Using a sensitive proteomic approach, we confirmed that Rb binds to the BRG1 and BRM family of SWI/SNF proteins. However, it is not known if Rb recruits the BRG1/BRM complex to E2F promoters and if they serve to activate E2F dependent gene expression. To address these questions, we propose the following specific aims.
Specific Aim 1. Determine if SV40LT can directly transactivate E2F promoters. We will perform Chromatin immunoprecipitation (ChIP) for SV40LT antigen on selected E2F dependent promoters. We will identify the host cell factors required for SV40LT binding to E2F-dependent promoters using knockout MEFs and determine if the known transforming domains of SV40LT contribute to E2F transactivation.
Specific Aim 2. Determine if Rb recruits the BRG1/BRM complex to affect E2F activity during quiescence and proliferation. We will determine the ability of the Rb-BRG1/BRM complex to bind specifically to E2F promoters and whether the complex contributes to activation or repression of E2F transcription.
Specific Aim 3. Determine if SV40LT selectively activates E2F promoters to promote entry into the cell cycle. We will perform ChIP using genomic tiling arrays (ChlP-chip) for SV40LT to identify promoter elements that SV40LT selectively binds. These results will be compared with ChlP-chip for Rb, p130, p107, E2F1, E2F2, E2F3 and E2F4. This approach will be used to determine if SV40LT activates all or a subset of E2F promoters to promote cell cycle entry and transformation.

Agency
National Institute of Health (NIH)
Institute
National Cancer Institute (NCI)
Type
Research Program Projects (P01)
Project #
5P01CA050661-25
Application #
8448551
Study Section
Special Emphasis Panel (ZCA1-GRB-S)
Project Start
Project End
Budget Start
2013-04-01
Budget End
2014-03-31
Support Year
25
Fiscal Year
2013
Total Cost
$236,601
Indirect Cost
$72,461
Name
Dana-Farber Cancer Institute
Department
Type
DUNS #
076580745
City
Boston
State
MA
Country
United States
Zip Code
02215
Pores Fernando, A T; Andrabi, S; Cizmecioglu, O et al. (2015) Polyoma small T antigen triggers cell death via mitotic catastrophe. Oncogene 34:2483-92
Luo, Leo Y; Kim, Eejung; Cheung, Hiu Wing et al. (2015) The Tyrosine Kinase Adaptor Protein FRS2 Is Oncogenic and Amplified in High-Grade Serous Ovarian Cancer. Mol Cancer Res 13:502-9
Smith, Jennifer A; Haberstroh, Friederike S; White, Elizabeth A et al. (2014) SMCX and components of the TIP60 complex contribute to E2 regulation of the HPV E6/E7 promoter. Virology 468-470:311-21
Shao, Diane D; Xue, Wen; Krall, Elsa B et al. (2014) KRAS and YAP1 converge to regulate EMT and tumor survival. Cell 158:171-84
White, Elizabeth A; Walther, Johanna; Javanbakht, Hassan et al. (2014) Genus beta human papillomavirus E6 proteins vary in their effects on the transactivation of p53 target genes. J Virol 88:8201-12
Utermark, Tamara; Schmit, Fabienne; Lee, Sang Hyun et al. (2014) The phosphatidylinositol 3-kinase (PI3K) isoform dependence of tumor formation is determined by the genetic mode of PI3K pathway activation rather than by tissue type. J Virol 88:10673-9
DeCaprio, J A (2014) Human papillomavirus type 16 E7 perturbs DREAM to promote cellular proliferation and mitotic gene expression. Oncogene 33:4036-8
Schmit, Fabienne; Utermark, Tamara; Zhang, Sen et al. (2014) PI3K isoform dependence of PTEN-deficient tumors can be altered by the genetic context. Proc Natl Acad Sci U S A 111:6395-400
DeCaprio, James A; Duensing, Anette (2014) The DREAM complex in antitumor activity of imatinib mesylate in gastrointestinal stromal tumors. Curr Opin Oncol 26:415-21
Naetar, Nana; Soundarapandian, Velmurugan; Litovchick, Larisa et al. (2014) PP2A-mediated regulation of Ras signaling in G2 is essential for stable quiescence and normal G1 length. Mol Cell 54:932-45

Showing the most recent 10 out of 124 publications