The overall objective of this program project is to understand MM growth in the context of its interaction with the bone marrow microenvironment (ME) in order to translate and exploit this knowledge into smarter MM growth control in patients. A concerted effort by a team of basic and clinical scientists is aimed at further overcoming the tremendous obstacles posed by MM's extensive genetic heterogeneity. We hypothesize that MM subjugates various ME components, perhaps in a MM subtypespecific manner, and that such MM-induced ME imprints may become an irreversible force contributing to MM's defiance of cure. In light of our theme of growth control in MM, toward achieving cure in an increasingly higher proportion of patients, investigators of 4 projects and 5 cores will continue to collaborate in a highly integrated and synergistic fashion. Project 1 plans to achieve better growth control via risk-based treatment strategies in an effort to reduce treatment-related toxicities in low-risk disease while accelerating outcome improvement in high-risk disease. Translational work will interrogate the MM-ME interaction and elucidate, through examination of serial gene expression profiling (GEP) samples, how this interaction affects growth control. Project 2 postulates to achieve better growth control in the relapsed setting by optimizing the clinical activity of haplo-identical NK cells via combination therapy with bortezomib and CS1 antibody. Basic research will examine the antimyeloma activity of human NK cells activated/expanded with K562 cells transfected with membrane-bound interleukin-15 (IL-15) and the co-stimulatory molecule 4-1BBL, in combination with bortezomib and CS1 Ab, in a murine model. Projects 3 and 4 deal with the role of bone, disease in MM pathogenesis. Project 3 will focus on fundamental observations relevant to DKK1 suppression of Wnt/beta-catenin signaling and the interaction of beta-catenin/cadherin cell adhesion with focal lesions, osteolytic bone disease, and MM dissemination to extramedullary disease, in an effort to harness the molecular MM-ME interaction therapeutically pertinent to MM pathogenesis, allowing us to investigate growth control via another avenue (by reduction of tumor cell adhesion). Project 4 will shed light on the biological mechanisms by which osteoblasts and osteoclasts affect myeloma cell growth and dissemination. By unraveling the consequences of altered activities of osteoclasts and osteoblasts on MM dissemination, and understanding the mechanisms involved, novel therapeutic interventions for MM can be developed. This work will be accomplished with access to 5 shared resource cores.

Agency
National Institute of Health (NIH)
Institute
National Cancer Institute (NCI)
Type
Research Program Projects (P01)
Project #
5P01CA055819-18
Application #
8324018
Study Section
Special Emphasis Panel (ZCA1-RPRB-J (M1))
Program Officer
Merritt, William D
Project Start
2000-06-05
Project End
2014-08-31
Budget Start
2012-09-11
Budget End
2013-08-31
Support Year
18
Fiscal Year
2012
Total Cost
$3,627,570
Indirect Cost
$1,124,532
Name
University of Arkansas for Medical Sciences
Department
Other Clinical Sciences
Type
Schools of Medicine
DUNS #
122452563
City
Little Rock
State
AR
Country
United States
Zip Code
72205
Alagpulinsa, David A; Ayyadevara, Srinivas; Yaccoby, Shmuel et al. (2016) A Cyclin-Dependent Kinase Inhibitor, Dinaciclib, Impairs Homologous Recombination and Sensitizes Multiple Myeloma Cells to PARP Inhibition. Mol Cancer Ther 15:241-50
McDonald, James E; Kessler, Marcus M; Gardner, Michael W et al. (2016) Assessment of Total Lesion Glycolysis by 18F FDG PET/CT Significantly Improves Prognostic Value of GEP and ISS in Myeloma. Clin Cancer Res :
VÃ¥tsveen, Thea Kristin; Sponaas, Anne-Marit; Tian, Erming et al. (2016) Erythropoietin (EPO)-receptor signaling induces cell death of primary myeloma cells in vitro. J Hematol Oncol 9:75
Pawlyn, Charlotte; Kaiser, Martin F; Heuck, Christoph et al. (2016) The Spectrum and Clinical Impact of Epigenetic Modifier Mutations in Myeloma. Clin Cancer Res 22:5783-5794
Weinhold, Niels; Ashby, Cody; Rasche, Leo et al. (2016) Clonal selection and double-hit events involving tumor suppressor genes underlie relapse in myeloma. Blood 128:1735-44
Jethava, Yogesh; Mitchell, Alan; Epstein, Joshua et al. (2016) Adverse metaphase cytogenetics can be overcome by adding bortezomib and thalidomide to fractionated melphalan transplants. Clin Cancer Res :
Weinhold, N; Heuck, C J; Rosenthal, A et al. (2016) Clinical value of molecular subtyping multiple myeloma using gene expression profiling. Leukemia 30:423-30
Pawlyn, C; Fowkes, L; Otero, S et al. (2016) Whole-body diffusion-weighted MRI: a new gold standard for assessing disease burden in patients with multiple myeloma? Leukemia 30:1446-8
Heuck, C J; Jethava, Y; Khan, R et al. (2016) Inhibiting MEK in MAPK pathway-activated myeloma. Leukemia 30:976-80
Mitchell, Jonathan S; Li, Ni; Weinhold, Niels et al. (2016) Genome-wide association study identifies multiple susceptibility loci for multiple myeloma. Nat Commun 7:12050

Showing the most recent 10 out of 272 publications