A clinically distinguishing feature of multiple myeloma (MM) is focal tumor growth detectable by MRI as focal lesions;this tumor growth is associated with increased resistance to chemotherapy and often osteolytic bone disease. Our preliminary work suggests that focal lesions, osteolytic bone disease, and dissemination to extramedullary disease are associated with molecular events resulting from suppression of Wnt/Beta-catenin signaling and from interactions between p-catenin and cadherin that mediate cell adhesion. Our long-term objective is to thoroughly understand the relationship between Wnt/Beta-catenin signaling and myeloma pathogenesis, with the ultimate goal of uncovering novel therapeutic approaches to control myeloma growth and improve survival and quality of life of patients with MM. We hypothesize that deregulation of Wnt/Beta-catenin signaling in both the microenvironment and the myeloma tumor cell is a fundamental and critical event in the natural history of MM. Therefore, control of this signaling axis may represent a paradigm shift in myeloma therapy. We will pursue this broad hypothesis through the following specific aims:
(Aim 1) Verify that elevated transcription of DKKI in myeloma tumor cells is related to polymorphisms/mutations in the DKKI promoter;
(Aim 2) Examine the roles of E- and N-cadherin and their interactions with Beta-catenin in MM pathogenesis and determine if they represent viable therapeutic targets;
(Aim 3) Determine whether bone-anabolic effects of bortezomib treatment result from induction of Beta-catenin signaling in mesenchymal stem cells and osteoblasts;
(Aim 4) Establish the derivation of a novel CYR61 isoform in MM and determine the in vitro and In vivo effects of this and native CYR61 on myeloma growth and bone disease. Comprehensive understanding of the molecular events surrounding dysregulation of Wnt/Beta-catenin signaling in MM will potentially provide the foundation for innovative therapeutic strategies to control growth of myeloma.

Public Health Relevance

Deregulation of Wnt/Beta-catenin signaling is central to myeloma biology and pathogenesis, so it may provide molecular therapeutic targets. Myeloma tumors aberrantly produce molecules that disrupt specific aspects of the Beta-catenin signaling axis, leading to enhanced tumor growth and bone destruction early in the disease and greater cell proliferation and metastases later in the disease. By thoroughly investigating the Beta-catenin signaling axis in myeloma. Project 3 will provide the framework for innovative therapeutic strategies.

Agency
National Institute of Health (NIH)
Institute
National Cancer Institute (NCI)
Type
Research Program Projects (P01)
Project #
5P01CA055819-19
Application #
8566717
Study Section
Special Emphasis Panel (ZCA1-RPRB-J)
Project Start
Project End
Budget Start
2013-09-01
Budget End
2014-08-31
Support Year
19
Fiscal Year
2013
Total Cost
$372,828
Indirect Cost
$115,359
Name
University of Arkansas for Medical Sciences
Department
Type
DUNS #
122452563
City
Little Rock
State
AR
Country
United States
Zip Code
72205
Rasche, L; Alapat, D; Kumar, M et al. (2018) Combination of flow cytometry and functional imaging for monitoring of residual disease in myeloma. Leukemia :
Went, Molly; Sud, Amit; Försti, Asta et al. (2018) Identification of multiple risk loci and regulatory mechanisms influencing susceptibility to multiple myeloma. Nat Commun 9:3707
Mehdi, Syed J; Johnson, Sarah K; Epstein, Joshua et al. (2018) Mesenchymal stem cells gene signature in high-risk myeloma bone marrow linked to suppression of distinct IGFBP2-expressing small adipocytes. Br J Haematol :
Rasche, Leo; Angtuaco, Edgardo J; Alpe, Terri L et al. (2018) The presence of large focal lesions is a strong independent prognostic factor in multiple myeloma. Blood 132:59-66
Jethava, Yogesh S; Mitchell, Alan; Epstein, Joshua et al. (2017) Adverse Metaphase Cytogenetics Can Be Overcome by Adding Bortezomib and Thalidomide to Fractionated Melphalan Transplants. Clin Cancer Res 23:2665-2672
Schinke, Carolina; Hoering, Antje; Wang, Hongwei et al. (2017) The prognostic value of the depth of response in multiple myeloma depends on the time of assessment, risk status and molecular subtype. Haematologica 102:e313-e316
Mohan, Meera; Samant, Rohan S; Yoon, Donghoon et al. (2017) Extensive Remineralization of Large Pelvic Lytic Lesions Following Total Therapy Treatment in Patients With Multiple Myeloma. J Bone Miner Res 32:1261-1266
Sawyer, J R; Tian, E; Shaughnessy Jr, J D et al. (2017) Hyperhaploidy is a novel high-risk cytogenetic subgroup in multiple myeloma. Leukemia 31:637-644
Rasche, Leo; Angtuaco, Edgardo; McDonald, James E et al. (2017) Low expression of hexokinase-2 is associated with false-negative FDG-positron emission tomography in multiple myeloma. Blood 130:30-34
Mikulasova, Aneta; Wardell, Christopher P; Murison, Alexander et al. (2017) The spectrum of somatic mutations in monoclonal gammopathy of undetermined significance indicates a less complex genomic landscape than that in multiple myeloma. Haematologica 102:1617-1625

Showing the most recent 10 out of 290 publications