Core A combines the solid support of MIRT administration with the innovation of Cancer Research and Biostatistics (CRAB) and the superb attention to detail of our data management team to ensure the efforts of all P01 projects and cores are both tangible and accessible. The structure of this P01 has afforded discoveries that were critically dependent on a large patient referral base with fight, long-term follow-up;integrated basic-clinical investigation;and statistical power to interpret findings in the context of historical patients with comprehensive annotations of clinical course and therapeutic interventions as well as availability of samples and laboratory correlates in our multiple myeloma (MM) database (MMDB) system. We have generated an unprecedented treasure of serially obtained bone marrow samples annotated according to the phase of therapy at the time of procurement as well as serial MRI and PET-CT studies for virtually all patients. This wealth of data requires a solid administrative and data management infrastructure to maintain its validity and utility. Core A provides this through Administration, Biostatistics, and Research Coordination components that have been designed to support 4 projects and 4 additional cores.
Aim 1 will provide administrative support to enable the entire Program Project to function as an integrated whole. Over the previous 15 years of funding, this program has supported, on average, 30 PIs and Co-Is and more than 60 Research Associates/Assistants, Post-doctoral Fellows, and other research personnel. The Administration Component will continue to ensure that support is provided to all projects and cores, so research activities are coordinated and have appropriate interactions to accomplish the goals of this Program Project.
Aim 2 will apply biostatistical principles and data management methods to Program Project studies in an effort to ensure in-depth and timely attention to all aspects of data collection as well as execution of increasingly sophisticated biostatistical analyses and bioinformatics. The Biostatistics component, through the innovative efforts of CRAB, will continue to enable researchers of this program to link study design, data collection, measurement, and analysis to the research hypotheses and research questions being investigated.
Aim 3 will provide research coordination that ensures the timely and accurate identification and retrieval of all data associated with MIRT patients in the context of unique patient characteristics, including prognostic features, therapeutic interventions, and serial GEP and imaging data.

Public Health Relevance

The inter-related activities of Core A will not only provide the necessary infrastructure to ensure that day-today operations of the Program Project run smoothly, but will also allow the rapid identification and dissemination of discoveries by individual projects to the other projects and, where appropriate, assess whether a need exists for adjusting research objectives and treatment approaches pursued in this program. As in the past, our successes will be promptly shared with the research community at large.

National Institute of Health (NIH)
National Cancer Institute (NCI)
Research Program Projects (P01)
Project #
Application #
Study Section
Special Emphasis Panel (ZCA1-RPRB-J)
Project Start
Project End
Budget Start
Budget End
Support Year
Fiscal Year
Total Cost
Indirect Cost
University of Arkansas for Medical Sciences
Little Rock
United States
Zip Code
Alagpulinsa, David A; Ayyadevara, Srinivas; Yaccoby, Shmuel et al. (2016) A Cyclin-Dependent Kinase Inhibitor, Dinaciclib, Impairs Homologous Recombination and Sensitizes Multiple Myeloma Cells to PARP Inhibition. Mol Cancer Ther 15:241-50
McDonald, James E; Kessler, Marcus M; Gardner, Michael W et al. (2016) Assessment of Total Lesion Glycolysis by 18F FDG PET/CT Significantly Improves Prognostic Value of GEP and ISS in Myeloma. Clin Cancer Res :
VÃ¥tsveen, Thea Kristin; Sponaas, Anne-Marit; Tian, Erming et al. (2016) Erythropoietin (EPO)-receptor signaling induces cell death of primary myeloma cells in vitro. J Hematol Oncol 9:75
Pawlyn, Charlotte; Kaiser, Martin F; Heuck, Christoph et al. (2016) The Spectrum and Clinical Impact of Epigenetic Modifier Mutations in Myeloma. Clin Cancer Res 22:5783-5794
Weinhold, Niels; Ashby, Cody; Rasche, Leo et al. (2016) Clonal selection and double-hit events involving tumor suppressor genes underlie relapse in myeloma. Blood 128:1735-44
Jethava, Yogesh; Mitchell, Alan; Epstein, Joshua et al. (2016) Adverse metaphase cytogenetics can be overcome by adding bortezomib and thalidomide to fractionated melphalan transplants. Clin Cancer Res :
Weinhold, N; Heuck, C J; Rosenthal, A et al. (2016) Clinical value of molecular subtyping multiple myeloma using gene expression profiling. Leukemia 30:423-30
Pawlyn, C; Fowkes, L; Otero, S et al. (2016) Whole-body diffusion-weighted MRI: a new gold standard for assessing disease burden in patients with multiple myeloma? Leukemia 30:1446-8
Heuck, C J; Jethava, Y; Khan, R et al. (2016) Inhibiting MEK in MAPK pathway-activated myeloma. Leukemia 30:976-80
Mitchell, Jonathan S; Li, Ni; Weinhold, Niels et al. (2016) Genome-wide association study identifies multiple susceptibility loci for multiple myeloma. Nat Commun 7:12050

Showing the most recent 10 out of 272 publications