In response to activating signals, NFKB and STATS are reversibly methylated on specific lysine residues by chromatin remodeling enzymes, in ways that profoundly affect their functions. We propose that reversible methylation occurs, in concert with histone methylation, when the factors are bound to specific promoters, altering the strength and duration of inducible gene expression, giving plasticity to the dependent biological responses, and helping to explain specific responses to different pro-inflammatory signals.
Aim 1. We will conduct global gene expression analyses in cells expressing STATS or the p65 subunit of NFKB in which the lysine methylation sites have been mutated and will also evaluate whether different activators of NFKB (IL-6 versus TNF versus TLRs) impose different patterns of phosphorylation on p65 as "bar codes" that in turn affect lysine methylation patterns at different cohorts of target genes.
Aim 2. We will extend initial observations that methylafions take place on promoter-bound STATS and NFKB as part of an ordered sequence of events leading to transcriptional activation. Extensive use will be made of chromatin immunoprecipitation (CHIP) assays to determine the fime courses of events at specific promoters that are regulated differentially by lysine methylation of STATS or p65. We also will use innovative mass spectrometric approaches to identify unknown proteins that assemble on specific promoters as a function of time following activation of STATS or NFKB.
Aim 3. For lysine residues that are not in direct contact with DNA, methylation may facilitate the binding of accessory proteins that alter function. These proteins will be identified by using a GST protein domain microarray and by immunopreciptation assays. K218 and K221 of p65 do contact DNA, so we will explore these interactions by studying the binding of the pure methylated protein to DNA directly.
Aim 4. IRFS, TIS7 and IRAK4 are important modulators of NFKB activafion and funcfion. We will determine how each affects the phosphorylation and methylation of p65 and the dependent patterns of NpKB-dependent gene expression. Examples of genes whose activafion is modulated will then be studied in detail as above, to define promoter-specific mechanisms. In Projects 1, 3 and 4, the ways in which the activation of these genes by NFKB is modulated will also be studied in primary mouse cells and in mouse tumor models. In this way, the mechanistic analyses of Project 2 will connect directly to the biological analyses of the other three projects.

Public Health Relevance

Recent evidence has shown us that promoter-bound transcription factors are modified by the same enzymes that modify histones, with important functional consequences. The modifications are gene-specific, and a full understanding of how they occur, and of how they affect the responses to major pro-inflammatory cytokines (IL-1, IL-6, TNF, TLRs) through their activation of NFKB and STATS, is important for understanding fully how the interactions of cells of the immune system with epithelial cells lead to cancer.

Agency
National Institute of Health (NIH)
Institute
National Cancer Institute (NCI)
Type
Research Program Projects (P01)
Project #
5P01CA062220-18
Application #
8434249
Study Section
Special Emphasis Panel (ZCA1-RPRB-0)
Project Start
Project End
Budget Start
2013-02-01
Budget End
2014-01-31
Support Year
18
Fiscal Year
2013
Total Cost
$355,983
Indirect Cost
$129,242
Name
Cleveland Clinic Lerner
Department
Type
DUNS #
135781701
City
Cleveland
State
OH
Country
United States
Zip Code
44195
Chattopadhyay, Saurabh; Sen, Ganes C (2014) Meet the terminator: The phosphatase PP2A puts brakes on IRF-3 activation. Mol Cell 54:210-1
Dermawan, Josephine Kam Tai; Gurova, Katerina; Pink, John et al. (2014) Quinacrine overcomes resistance to erlotinib by inhibiting FACT, NF-?B, and cell-cycle progression in non-small cell lung cancer. Mol Cancer Ther 13:2203-14
Zhao, Chenyang; Pavicic Jr, Paul G; Datta, Shyamasree et al. (2014) Cellular stress amplifies TLR3/4-induced CXCL1/2 gene transcription in mononuclear phagocytes via RIPK1. J Immunol 193:879-88
De, Sarmishtha; Dermawan, Josephine Kam Tai; Stark, George R (2014) EGF receptor uses SOS1 to drive constitutive activation of NF?B in cancer cells. Proc Natl Acad Sci U S A 111:11721-6
Yu, Minjia; Zhou, Hao; Zhao, Junjie et al. (2014) MyD88-dependent interplay between myeloid and endothelial cells in the initiation and progression of obesity-associated inflammatory diseases. J Exp Med 211:887-907
Chattopadhyay, Saurabh; Sen, Ganes C (2014) dsRNA-activation of TLR3 and RLR signaling: gene induction-dependent and independent effects. J Interferon Cytokine Res 34:427-36
Chattopadhyay, Saurabh; Sen, Ganes C (2014) Tyrosine phosphorylation in Toll-like receptor signaling. Cytokine Growth Factor Rev 25:533-41
Stahl, Martin; Ries, Jenna; Vermeulen, Jenny et al. (2014) A novel mouse model of Campylobacter jejuni gastroenteritis reveals key pro-inflammatory and tissue protective roles for Toll-like receptor signaling during infection. PLoS Pathog 10:e1004264
Lin, Keng-Mean; Hu, Wei; Troutman, Ty Dale et al. (2014) IRAK-1 bypasses priming and directly links TLRs to rapid NLRP3 inflammasome activation. Proc Natl Acad Sci U S A 111:775-80
Dasgupta, Maupali; Unal, Hamiyet; Willard, Belinda et al. (2014) Critical role for lysine 685 in gene expression mediated by transcription factor unphosphorylated STAT3. J Biol Chem 289:30763-71

Showing the most recent 10 out of 210 publications