The theme of this program has not changed in 15 years: Understanding the biology of human hematopoietic stem cells (HSC) and their progeny will result in improved hematopoietic cell-based therapy for a variety of lethal malignant diseases. In the current funding period we have established "double umbilical cord blood" (DUCB) transplantation as an effective treatment which may transform the practice of hematopoietic cell transplantation (HCT) because it vastly increases the pool of patients to whom transplant can be offered. We will now approach three important issues in the DUCB transplant setting-graft versus host disease (GVHD), delayed immune reconstitution with resultant late infection, and refractory or relapsed leukemia. John Wagner MD and his co-investigator Bruce Blazar MD have generated preclinical data demonstrating the suppressive effect of UCB-derived regulatory T cells (Treg) on GVHD and performed "first-in-human" UCB Treg safety and dose-finding trials. In Project 1, Dr Wagner proposes a series of clinical trials testing the efficacy of UCB Treg to prevent and to treat acute GVHD including add-back of UCB Tregs and effector T cells (Teffs) in calibrated doses, and development of "off-the-shelf UCB Treg products. Dr Blazar has characterized UCB-derived progenitor T cells (Tprogs), and in Project 2 proposes basic studies exploring their role in restoration of thymic epithelial cell (TEC) function as well as inducible pluripotent stem cell (iPS) models to replace TEC. Findings from these studies will be translated in clinical trials conducted in Project 1 assessing the safety and efficacy of UCB Tprog therapy to reconstitute immune function following transplant and to reduce late, intracellular infections. Finally, in studies supported by this program, Jeffrey Miller MD has confirmed the marked anti-leukemia effects of allogeneic natural killer (NK) cells. In Project 3 he proposes pre-clinical and clinical studies of haplo-identical NK cell adoptive therapy used in combination with DUCB transplant to provide both immediate tumor reduction and long-term anti-leukemia effects in patients with refractory or relapse acute leukemia. These interactive projects are supported by administrative and biostatistical cores (A and B), as well as Core C, providing cGMP cell processing and immune monitoring and Core D, providing animals, environment and expertise to support human adoptive transfer experiments. This long-standing and highly collaborative program project is well positioned to examine these intertwined immunologic and clinical issues and to develop improved cell-based therapies for a variety of lethal hematologic malignancies.

Public Health Relevance

The cumulative results of our current and proposed programmatic studies will be to increase the availability, safety and efficacy of hematopoietic cell transplant and cell-based therapies to treat otherwise lethal hematopoietic malignancies. Findings from the proposed studies can also be used to treat other potentially fatal cancers, hematopoietic, immune, metabolic and infectious disorders, and to address current barriers to solid organ transplant in children and adults world-wide.

Agency
National Institute of Health (NIH)
Institute
National Cancer Institute (NCI)
Type
Research Program Projects (P01)
Project #
5P01CA065493-20
Application #
8725940
Study Section
Special Emphasis Panel (ZCA1-RPRB-J (J1))
Program Officer
Merritt, William D
Project Start
1997-09-15
Project End
2015-06-30
Budget Start
2014-07-01
Budget End
2015-06-30
Support Year
20
Fiscal Year
2014
Total Cost
$2,064,762
Indirect Cost
$709,085
Name
University of Minnesota Twin Cities
Department
Internal Medicine/Medicine
Type
Schools of Medicine
DUNS #
555917996
City
Minneapolis
State
MN
Country
United States
Zip Code
55455
Foley, Bree; Felices, Martin; Cichocki, Frank et al. (2014) The biology of NK cells and their receptors affects clinical outcomes after hematopoietic cell transplantation (HCT). Immunol Rev 258:45-63
Mitchell, Richard; Wagner, John E; Hirsch, Betsy et al. (2014) Haematopoietic cell transplantation for acute leukaemia and advanced myelodysplastic syndrome in Fanconi anaemia. Br J Haematol 164:384-95
Miller, Jeffrey S; Rooney, Cliona M; Curtsinger, Julie et al. (2014) Expansion and homing of adoptively transferred human natural killer cells in immunodeficient mice varies with product preparation and in vivo cytokine administration: implications for clinical therapy. Biol Blood Marrow Transplant 20:1252-7
Felices, Martin; Lenvik, Todd R; Ankarlo, Dave E M et al. (2014) Functional NK cell repertoires are maintained through IL-2R? and Fas ligand. J Immunol 192:3889-97
Gleason, Michelle K; Ross, Julie A; Warlick, Erica D et al. (2014) CD16xCD33 bispecific killer cell engager (BiKE) activates NK cells against primary MDS and MDSC CD33+ targets. Blood 123:3016-26
Kharbanda, Sandhya; Smith, Angela R; Hutchinson, Stephanie K et al. (2014) Unrelated donor allogeneic hematopoietic stem cell transplantation for patients with hemoglobinopathies using a reduced-intensity conditioning regimen and third-party mesenchymal stromal cells. Biol Blood Marrow Transplant 20:581-6
Sawitzki, Birgit; Brunstein, Claudio; Meisel, Christian et al. (2014) Prevention of graft-versus-host disease by adoptive T regulatory therapy is associated with active repression of peripheral blood Toll-like receptor 5 mRNA expression. Biol Blood Marrow Transplant 20:173-82
Ustun, Celalettin; Bachanova, Veronika; Shanley, Ryan et al. (2014) Importance of donor ethnicity/race matching in unrelated adult and cord blood allogeneic hematopoietic cell transplant. Leuk Lymphoma 55:358-64
Kaliyaperumal, Saravanan; Watkins, Benjamin; Sharma, Prachi et al. (2014) CD8-predominant T-cell CNS infiltration accompanies GVHD in primates and is improved with immunoprophylaxis. Blood 123:1967-9
Rogosheske, J R; Fargen, A D; DeFor, T E et al. (2014) Higher therapeutic CsA levels early post transplantation reduce risk of acute GVHD and improves survival. Bone Marrow Transplant 49:122-5

Showing the most recent 10 out of 160 publications