During the current funding period we demonstrated the significant anti-leukemic potential of adoptively transferred adult NK cells by effecting complete remissions in patients with advanced AML. This project will include novel clinical trials designed to improve techniques exploiting NK cell alloreactivity in umbilical cord blood (UCB) transplants as well as in vitro and murine experiments to characterize the mechanisms supporting the expansion and education of NK cells derived from adult blood and from UCB progenitors. In SA1, we will perform a series of clinical trials assessing the efficacy of IL-2 administration to enhance in vivo NK cell expansion and education in an adult NK cell adoptive transfer/T cell depleted UCB transplantation strategy. We have generated in vitro data suggesting an important effect of IL-15 on NK cell expansion and differentiation. Clinical grade IL-15 has recently been made available to us by the NCI, and we will next substitute IL-15 for IL-2 in the first human trial to test the ability of IL-15 to facilitate education of engrafting NK cells after UCB transplant. A third clinical trial will test the hypothesis that adoptive transfer of >10 fold higher doses of ex vivo expanded adult NK cells will further enhance efficacy. In SA2 we will monitor the receptor repertoires, function and education of NK cells expanding in patients exposed to IL-2 or IL-15, after Treg infusion from the UCB transplant trials in Project 1 (Wagner), and in transplant recipients responding to viral stress. We will also use pre-clincial in vitro assays and a murine model in which adult human NK cells and UCB progenitors are transferred into NOD SCID IL2Rgamma-c-null immunodeficient mice to test novel strategies to enhance NK cell function. Specifically, we will test methods to enhance the anti-leukemic function of NK cells with potential for translation into clinical trials. We will test trans-presentation of IL-15 using lL-15R?-Fc, ex vivo NK cell expansion using IL-15?+ artificial K562 cell stimulator cells ( Notch ligand or41BB ligand), and techniques to tailor the allo-reactive specificity of ex vivo expanded NK cells by culture with K562 stimulators expressing single Bw4, C1 or C2 KIR ligands. Ultimately, the best strategy from this series of clinical trials designed to optimize the anti-leukemic effect of NK cells will be combined with the clinical methods to enhance immune reconstitution and minimize GVHD developed in Project 1 and in Project 2.

Public Health Relevance

Patients with advanced AML often die of their disease and have no curative treatment options. We hypothesize that the persistence, expansion and function of NK cells after adoptive transfer will correlate with efficacy. Optimizing NK cell therapy with umbilical cord transplant has the potential to offer new therapies to patients and change transplant platforms to improve treatment outcomes for cancer patients.

National Institute of Health (NIH)
National Cancer Institute (NCI)
Research Program Projects (P01)
Project #
Application #
Study Section
Special Emphasis Panel (ZCA1-RPRB-J)
Project Start
Project End
Budget Start
Budget End
Support Year
Fiscal Year
Total Cost
Indirect Cost
University of Minnesota Twin Cities
United States
Zip Code
Foley, Bree; Felices, Martin; Cichocki, Frank et al. (2014) The biology of NK cells and their receptors affects clinical outcomes after hematopoietic cell transplantation (HCT). Immunol Rev 258:45-63
Mitchell, Richard; Wagner, John E; Hirsch, Betsy et al. (2014) Haematopoietic cell transplantation for acute leukaemia and advanced myelodysplastic syndrome in Fanconi anaemia. Br J Haematol 164:384-95
Miller, Jeffrey S; Rooney, Cliona M; Curtsinger, Julie et al. (2014) Expansion and homing of adoptively transferred human natural killer cells in immunodeficient mice varies with product preparation and in vivo cytokine administration: implications for clinical therapy. Biol Blood Marrow Transplant 20:1252-7
Felices, Martin; Lenvik, Todd R; Ankarlo, Dave E M et al. (2014) Functional NK cell repertoires are maintained through IL-2R? and Fas ligand. J Immunol 192:3889-97
Gleason, Michelle K; Ross, Julie A; Warlick, Erica D et al. (2014) CD16xCD33 bispecific killer cell engager (BiKE) activates NK cells against primary MDS and MDSC CD33+ targets. Blood 123:3016-26
Kharbanda, Sandhya; Smith, Angela R; Hutchinson, Stephanie K et al. (2014) Unrelated donor allogeneic hematopoietic stem cell transplantation for patients with hemoglobinopathies using a reduced-intensity conditioning regimen and third-party mesenchymal stromal cells. Biol Blood Marrow Transplant 20:581-6
Sawitzki, Birgit; Brunstein, Claudio; Meisel, Christian et al. (2014) Prevention of graft-versus-host disease by adoptive T regulatory therapy is associated with active repression of peripheral blood Toll-like receptor 5 mRNA expression. Biol Blood Marrow Transplant 20:173-82
Ustun, Celalettin; Bachanova, Veronika; Shanley, Ryan et al. (2014) Importance of donor ethnicity/race matching in unrelated adult and cord blood allogeneic hematopoietic cell transplant. Leuk Lymphoma 55:358-64
Kaliyaperumal, Saravanan; Watkins, Benjamin; Sharma, Prachi et al. (2014) CD8-predominant T-cell CNS infiltration accompanies GVHD in primates and is improved with immunoprophylaxis. Blood 123:1967-9
Rogosheske, J R; Fargen, A D; DeFor, T E et al. (2014) Higher therapeutic CsA levels early post transplantation reduce risk of acute GVHD and improves survival. Bone Marrow Transplant 49:122-5

Showing the most recent 10 out of 160 publications