Knowledge of the mechanisms underlying the normal development of blood cells is important in understanding and developing new treatments for various blood diseases, including leukemias. The long range goals of this project are to further our understanding of the mechanisms involved in leukemia by understanding the effect of various leukemia oncogenes on the transcription factors which regulate normal myeloid development from stem cells. Previous studies from our laboratory and others has led to the identification of the transcription factor CCAAT Enhancer Binding Protein alpha (C/EBPa) and as being absolutely critical for differentiation of normal myeloid blasts, and identified abnormalities in C/EBPa as playing critical roles in a number of specific types of Acute Myeloid Leukemia (AML). Studies in the past grant period have demonstrated that AML oncogenes, including PML/RAR and activating mutations of FLT3 can affect the expression and function of C/EBPa, and that drugs that inhibit these oncogenes restore the function of this transcription factor. Over the next 5 years, we propose further our knowledge of how these oncogenes affect critical transcription factor function in cell differentiation in order to more effectively develop and utilize drug therapy aimed at these targets. These studies are highly interactive with other components of this program, in that we will continue our interactions with Project 1 in developing new drug compbinations targeting transcription factors, Project 2 to investigate the co-operation between leukemia oncogenes and loss of transcription factor function, as well as with Project 5 and Core B to confirm our hypotheses in cells derived from patients undergoing clinical trials. Finally, we will interact closely with the new Project 4 to investigate the effect of another important oncogene on transcription factor function. Therefore, we propose the following Specific Aims: (1) To investigate the effects of PML/RAR alpha on C/EBPa , and the response of C/EBP beta to all trans retinoic acid (ATRA);(2) To develop mouse models which combining loss of C/EBPa and tyrosine kinases in development of AML;and (3) To investigate the pathways between FLT3 activation, C/EBPa phosphorylation, and AML.

Agency
National Institute of Health (NIH)
Institute
National Cancer Institute (NCI)
Type
Research Program Projects (P01)
Project #
5P01CA066996-15
Application #
8377883
Study Section
Special Emphasis Panel (ZCA1-RPRB-J)
Project Start
Project End
2014-03-30
Budget Start
2012-04-01
Budget End
2013-03-30
Support Year
15
Fiscal Year
2012
Total Cost
$474,639
Indirect Cost
$58,877
Name
Dana-Farber Cancer Institute
Department
Type
DUNS #
076580745
City
Boston
State
MA
Country
United States
Zip Code
02215
Wan, Liling; Wen, Hong; Li, Yuanyuan et al. (2017) ENL links histone acetylation to oncogenic gene expression in acute myeloid leukaemia. Nature 543:265-269
Weisberg, Ellen L; Puissant, Alexandre; Stone, Richard et al. (2017) Characterization of midostaurin as a dual inhibitor of FLT3 and SYK and potentiation of FLT3 inhibition against FLT3-ITD-driven leukemia harboring activated SYK kinase. Oncotarget 8:52026-52044
Pallis, Monica; Burrows, Francis; Ryan, Jeremy et al. (2017) Complementary dynamic BH3 profiles predict co-operativity between the multi-kinase inhibitor TG02 and the BH3 mimetic ABT-199 in acute myeloid leukaemia cells. Oncotarget 8:16220-16232
Tamura, Akihiro; Hirai, Hideyo; Yokota, Asumi et al. (2017) C/EBP? is required for survival of Ly6C- monocytes. Blood 130:1809-1818
Toska, Eneda; Osmanbeyoglu, Hatice U; Castel, Pau et al. (2017) PI3K pathway regulates ER-dependent transcription in breast cancer through the epigenetic regulator KMT2D. Science 355:1324-1330
Shortt, Jake; Ott, Christopher J; Johnstone, Ricky W et al. (2017) A chemical probe toolbox for dissecting the cancer epigenome. Nat Rev Cancer 17:160-183
Gonzalez, David; Luyten, Annouck; Bartholdy, Boris et al. (2017) ZNF143 is an important regulator of the myeloid transcription factor C/EBP?. J Biol Chem :
Tothova, Zuzana; Krill-Burger, John M; Popova, Katerina D et al. (2017) Multiplex CRISPR/Cas9-Based Genome Editing in Human Hematopoietic Stem Cells Models Clonal Hematopoiesis and Myeloid Neoplasia. Cell Stem Cell 21:547-555.e8
Valerio, Daria G; Xu, Haiming; Chen, Chun-Wei et al. (2017) Histone Acetyltransferase Activity of MOF Is Required for MLL-AF9 Leukemogenesis. Cancer Res 77:1753-1762
Li, Hubo; Mar, Brenton G; Zhang, Huadi et al. (2017) The EMT regulator ZEB2 is a novel dependency of human and murine acute myeloid leukemia. Blood 129:497-508

Showing the most recent 10 out of 303 publications