Lenalidomide, a derivative of thalidomide, is a transformative therapy for a subset of patients with myelodysplastic syndrome, and has demonstrated promise in early clinical trials in acute myeloid leukemia (AML), but the mechanism of lenalidomide activity in myeloid malignancies is not known. We have identified and validated an E3 ubiquitin ligase, CRL4-CRBN, as a direct target of lenalidomide, consistent with previous reports that this complex is targeted by thalidomide. We hypothesize that the pleitropic effects of lenalidomide, including its therapeutic efficacy in myeloid malignancies, is due to altered ubiquitination of targets ofthe CRL4-CRBN ubiqutin ligase.
In Aim 1, we will use a recentiy developed proteomic approach to define the proteins that are differentially ubiquitinated in AML cells in response to lenalidomide, and we will validate that these proteins are direct targets of the CRL4-CRBN ubiquifin ligase using genetic tools and biochemical assays.
In Aim 2, we will use similar approaches to define the molecular basis of the immunomodulatory properties of lenalidomide that lead to alterations in the bone marrow microenvironment. These effects may be critical for the therapeutic efficacy of lenalidomide.
In Aim 3, we will investigate how altered ubiquitination of specific proteins may sensitize cells to additional therapies. Significant responses to lenalidomide as a single agent have been reported in AML, but only a subset of pafients respond, and complete remissions are of short duration. We will therefore seek to improve the therapeutic potential of lenalidomide by examing combinations with addifional therapies in collaboration with each of the other projects in this POl. In addition, we will examine ubiquitinated proteins and genetic abnormalities in patients treated with lenalidomide plus induction chemotherapy in a clinical trial proposed in Project 5. These studies will elucidate a novel mechanism for a cancer therapy, the direct targeting of a specific ubiquitin ligase with both cell autonomous and cell non-autonomous effects. In addition, we will identify novel combinations of lenalidomide with additional agents to develop more efficacious treatments for AML.

Public Health Relevance

Lenalidomide is an effective therapy for the treatment of specific hematologic malignancies, but its mechanism of action is unknown. We will examine the molecular basis for lenalidomide activity and identify novel approaches to the treatment of acute myeloid leukemia based on combinations of lenalidomide with additional therapies.

Agency
National Institute of Health (NIH)
Institute
National Cancer Institute (NCI)
Type
Research Program Projects (P01)
Project #
2P01CA066996-16A1
Application #
8666229
Study Section
Special Emphasis Panel (ZCA1-RPRB-C (J1))
Project Start
1997-04-25
Project End
2019-08-31
Budget Start
2014-09-16
Budget End
2015-08-31
Support Year
16
Fiscal Year
2014
Total Cost
$327,796
Indirect Cost
Name
Brigham and Women's Hospital
Department
Type
DUNS #
030811269
City
Boston
State
MA
Country
United States
Zip Code
02115
Bolin, Sara; Borgenvik, Anna; Persson, Camilla U et al. (2018) Combined BET bromodomain and CDK2 inhibition in MYC-driven medulloblastoma. Oncogene 37:2850-2862
Sievers, Quinlan L; Petzold, Georg; Bunker, Richard D et al. (2018) Defining the human C2H2 zinc finger degrome targeted by thalidomide analogs through CRBN. Science 362:
Nauffal, Mary; Redd, Robert; Ni, Jian et al. (2018) Single 6-mg dose of rasburicase: The experience in a large academic medical center. J Oncol Pharm Pract :1078155218791333
Stein, Eytan M; Garcia-Manero, Guillermo; Rizzieri, David A et al. (2018) The DOT1L inhibitor pinometostat reduces H3K79 methylation and has modest clinical activity in adult acute leukemia. Blood 131:2661-2669
Hemming, Matthew L; Lawlor, Matthew A; Zeid, Rhamy et al. (2018) Gastrointestinal stromal tumor enhancers support a transcription factor network predictive of clinical outcome. Proc Natl Acad Sci U S A 115:E5746-E5755
Kardosova, Miroslava; Zjablovskaja, Polina; Danek, Petr et al. (2018) C/EBP? is dispensable for steady-state and emergency granulopoiesis. Haematologica 103:e331-e335
Numata, Akihiko; Kwok, Hui Si; Kawasaki, Akira et al. (2018) The basic helix-loop-helix transcription factor SHARP1 is an oncogenic driver in MLL-AF6 acute myelogenous leukemia. Nat Commun 9:1622
Brown, Fiona C; Still, Eric; Koche, Richard P et al. (2018) MEF2C Phosphorylation Is Required for Chemotherapy Resistance in Acute Myeloid Leukemia. Cancer Discov 8:478-497
Manley, Paul W; Weisberg, Ellen; Sattler, Martin et al. (2018) Midostaurin, a Natural Product-Derived Kinase Inhibitor Recently Approved for the Treatment of Hematological MalignanciesPublished as part of the Biochemistry series ""Biochemistry to Bedside"". Biochemistry 57:477-478
Ebert, Benjamin L; Libby, Peter (2018) Clonal Hematopoiesis Confers Predisposition to Both Cardiovascular Disease and Cancer: A Newly Recognized Link Between Two Major Killers. Ann Intern Med 169:116-117

Showing the most recent 10 out of 376 publications