The recent demonstration that the histone methyltransferase, D0T1L and the acetylysine binding protein BRD4 are required for continued proliferation and survival for subsets of acute myelogenous leukemia (AML) cells points to epigenetic mechanisms as potential therapeutic targets in this disease. Small molecule inhibitors of D0T1L and BRD4 have been developed and show remarkable antiproliferative activity against AML cells providing further rationale for deeper characterization of these processes. The central hypothesis for this project is that small molecule inhibitors of epigenetic mechanisms will effectively target AML cells. We will assess this hypothesis through the use novel small molecules, chemical biological approaches, epigenomic analyses genetically engineered mouse models and genetic screens.
In specific Aim 1 we will define the mechanisms by which bromodomains inhibitors suppress Myc and E2F driven gene expression programs.
In specific Aim 1 1 we will define mechanisms of acquired resistance to small molecule bromodomain inhibitors. These studies will inform as to possible mechanisms of clinical resistance to such therapies, and illuminate the cellular pathways through which these molecules suppress proliferation and induce apoptosis.
In specific aim 3 we will assess compelling combinations of small molecule inhibitors of epigenetic pathways including the combination of DOTI L inhibitors and BET inhibitors. Given our access to newly developed small molecule inhibitors, the proposed studies have the potential to bring new, more efficacious, less toxic therapies to children and adults diagnosed with AML.

Public Health Relevance

Recent discoveries suggest that targeting epigeneitc mechansims will be a new approach to cancer therapy. We have recently discovered two proteins that influence gene expression via epigenetic mechasnisms which are required for survival of acute myelogenous leuekmia cells. In this proposal we will define the mechanism of action of these proteins, define mechansims of resitance to inhibtiors of these epigenetic mechanisms, and begin to translate these approaches to clinical assessment.

National Institute of Health (NIH)
National Cancer Institute (NCI)
Research Program Projects (P01)
Project #
Application #
Study Section
Special Emphasis Panel (ZCA1-RPRB-C (J1))
Project Start
Project End
Budget Start
Budget End
Support Year
Fiscal Year
Total Cost
Indirect Cost
Brigham and Women's Hospital
United States
Zip Code
Hanoun, Maher; Zhang, Dachuan; Mizoguchi, Toshihide et al. (2014) Acute myelogenous leukemia-induced sympathetic neuropathy promotes malignancy in an altered hematopoietic stem cell niche. Cell Stem Cell 15:365-75
Adamia, Sophia; Bar-Natan, Michal; Haibe-Kains, Benjamin et al. (2014) NOTCH2 and FLT3 gene mis-splicings are common events in patients with acute myeloid leukemia (AML): new potential targets in AML. Blood 123:2816-25
Heckl, Dirk; Kowalczyk, Monika S; Yudovich, David et al. (2014) Generation of mouse models of myeloid malignancy with combinatorial genetic lesions using CRISPR-Cas9 genome editing. Nat Biotechnol 32:941-6
Adamia, Sophia; Haibe-Kains, Benjamin; Pilarski, Patrick M et al. (2014) A genome-wide aberrant RNA splicing in patients with acute myeloid leukemia identifies novel potential disease markers and therapeutic targets. Clin Cancer Res 20:1135-45
Bruedigam, Claudia; Bagger, Frederik O; Heidel, Florian H et al. (2014) Telomerase inhibition effectively targets mouse and human AML stem cells and delays relapse following chemotherapy. Cell Stem Cell 15:775-90
Santos, Margarida A; Faryabi, Robert B; Ergen, Aysegul V et al. (2014) DNA-damage-induced differentiation of leukaemic cells as an anti-cancer barrier. Nature 514:107-11
Schneider, Rebekka K; Ademà, Vera; Heckl, Dirk et al. (2014) Role of casein kinase 1A1 in the biology and targeted therapy of del(5q) MDS. Cancer Cell 26:509-20
Liu, Suiyang; Yin, Li; Stroopinsky, Dina et al. (2014) MUC1-C oncoprotein promotes FLT3 receptor activation in acute myeloid leukemia cells. Blood 123:734-42
Liss, Adam; Ooi, Chia-Huey; Zjablovskaja, Polina et al. (2014) The gene signature in CCAAT-enhancer-binding protein * dysfunctional acute myeloid leukemia predicts responsiveness to histone deacetylase inhibitors. Haematologica 99:697-705
Ng, C E L; Sinha, A; Krivtsov, A et al. (2014) KRas(G12D)-evoked leukemogenesis does not require *-catenin. Leukemia 28:698-702

Showing the most recent 10 out of 218 publications