The recent demonstration that the histone methyltransferase, D0T1L and the acetylysine binding protein BRD4 are required for continued proliferation and survival for subsets of acute myelogenous leukemia (AML) cells points to epigenetic mechanisms as potential therapeutic targets in this disease. Small molecule inhibitors of D0T1L and BRD4 have been developed and show remarkable antiproliferative activity against AML cells providing further rationale for deeper characterization of these processes. The central hypothesis for this project is that small molecule inhibitors of epigenetic mechanisms will effectively target AML cells. We will assess this hypothesis through the use novel small molecules, chemical biological approaches, epigenomic analyses genetically engineered mouse models and genetic screens.
In specific Aim 1 we will define the mechanisms by which bromodomains inhibitors suppress Myc and E2F driven gene expression programs.
In specific Aim 1 1 we will define mechanisms of acquired resistance to small molecule bromodomain inhibitors. These studies will inform as to possible mechanisms of clinical resistance to such therapies, and illuminate the cellular pathways through which these molecules suppress proliferation and induce apoptosis.
In specific aim 3 we will assess compelling combinations of small molecule inhibitors of epigenetic pathways including the combination of DOTI L inhibitors and BET inhibitors. Given our access to newly developed small molecule inhibitors, the proposed studies have the potential to bring new, more efficacious, less toxic therapies to children and adults diagnosed with AML.

Public Health Relevance

Recent discoveries suggest that targeting epigeneitc mechansims will be a new approach to cancer therapy. We have recently discovered two proteins that influence gene expression via epigenetic mechasnisms which are required for survival of acute myelogenous leuekmia cells. In this proposal we will define the mechanism of action of these proteins, define mechansims of resitance to inhibtiors of these epigenetic mechanisms, and begin to translate these approaches to clinical assessment.

Agency
National Institute of Health (NIH)
Institute
National Cancer Institute (NCI)
Type
Research Program Projects (P01)
Project #
5P01CA066996-18
Application #
9143047
Study Section
Special Emphasis Panel (ZCA1-RPRB-C)
Project Start
Project End
Budget Start
2016-09-01
Budget End
2017-08-31
Support Year
18
Fiscal Year
2016
Total Cost
$471,092
Indirect Cost
$20,213
Name
Brigham and Women's Hospital
Department
Type
DUNS #
030811269
City
Boston
State
MA
Country
United States
Zip Code
02115
Nauffal, Mary; Redd, Robert; Ni, Jian et al. (2018) Single 6-mg dose of rasburicase: The experience in a large academic medical center. J Oncol Pharm Pract :1078155218791333
Stein, Eytan M; Garcia-Manero, Guillermo; Rizzieri, David A et al. (2018) The DOT1L inhibitor pinometostat reduces H3K79 methylation and has modest clinical activity in adult acute leukemia. Blood 131:2661-2669
Hemming, Matthew L; Lawlor, Matthew A; Zeid, Rhamy et al. (2018) Gastrointestinal stromal tumor enhancers support a transcription factor network predictive of clinical outcome. Proc Natl Acad Sci U S A 115:E5746-E5755
Kardosova, Miroslava; Zjablovskaja, Polina; Danek, Petr et al. (2018) C/EBP? is dispensable for steady-state and emergency granulopoiesis. Haematologica 103:e331-e335
Numata, Akihiko; Kwok, Hui Si; Kawasaki, Akira et al. (2018) The basic helix-loop-helix transcription factor SHARP1 is an oncogenic driver in MLL-AF6 acute myelogenous leukemia. Nat Commun 9:1622
Brown, Fiona C; Still, Eric; Koche, Richard P et al. (2018) MEF2C Phosphorylation Is Required for Chemotherapy Resistance in Acute Myeloid Leukemia. Cancer Discov 8:478-497
Manley, Paul W; Weisberg, Ellen; Sattler, Martin et al. (2018) Midostaurin, a Natural Product-Derived Kinase Inhibitor Recently Approved for the Treatment of Hematological MalignanciesPublished as part of the Biochemistry series ""Biochemistry to Bedside"". Biochemistry 57:477-478
Ebert, Benjamin L; Libby, Peter (2018) Clonal Hematopoiesis Confers Predisposition to Both Cardiovascular Disease and Cancer: A Newly Recognized Link Between Two Major Killers. Ann Intern Med 169:116-117
DiNardo, Courtney D; Pratz, Keith W; Letai, Anthony et al. (2018) Safety and preliminary efficacy of venetoclax with decitabine or azacitidine in elderly patients with previously untreated acute myeloid leukaemia: a non-randomised, open-label, phase 1b study. Lancet Oncol 19:216-228
Brien, Gerard L; Remillard, David; Shi, Junwei et al. (2018) Targeted degradation of BRD9 reverses oncogenic gene expression in synovial sarcoma. Elife 7:

Showing the most recent 10 out of 376 publications