The overall goal of this program is to develop more effective and less toxic therapies for the treatment of leukemia. Tremendous progress has been made in recent years in understanding the genetic and molecular basis of acute myeloid leukemia (AML), but progress towards improving outcomes for patients have been more limited. We will evaluate the efficacy and mechanistic basis for a set of novel therapeutic strategies for the treatment of AML. Specifically, we will investigate the modulation of apoptotic threshold in Project 1; inhibition of a specific ubiquitin ligase, CRL4-CRBN, by lenalidomide to induce cell cycle arrest, apoptosis, and differentiation; targeting lysine acetyltransferase activity to alter he function of transcription factors that are critical for AML biology in Project 3; and targeting key epigenetic regulators, BET bromodomain proteins and DOT1L, in Project 4. In addition to hypothesis-driven investigation of the biological mechanisms relevant to each therapeutic approach, we will investigate the therapeutic potential of these approaches using common assays and models. These therapeutic approaches will be investigated both individually and in combinations with existing therapies and each other. We will test molecules in vitro using dynamic BHS profiling, developed by Dr. Letai (Project 1) to examine the impact of candidate small molecules on apoptotic threshold. We will test molecules in vivo using both murine models developed by Dr. Bradner (Project 4) and primary human AML samples in xenograft models (Dr. Griffin, Core B). The most promising treatments will be brought forward to clinical trials in Core D. We will prospectively identify the subgroups most likely to respond by deep genetic and molecular characterization of AML samples used for pre-clinical and clinical studies. In aggregate, these studies will lead to the advancement of novel therapies for the treatment of AML, identification of genetic subgroups that are most likely to respond to novel treatments, and insights into the biological mechanisms of action for novel therapeutic strategies.

Public Health Relevance

The overall goal of this program is to develop more effective and less toxic therapies for the treatment of leukemia. We will explore the targeting of epigenetic regulators, ubiquitin ligases, lysine acetyltransferases, and modulators of apoptotic threshold. Following pre-clinical studies in common model systems, the most promising therapies will be tested in clinical trials with deep molecular characterization of patient samples.

National Institute of Health (NIH)
National Cancer Institute (NCI)
Research Program Projects (P01)
Project #
Application #
Study Section
Special Emphasis Panel (ZCA1)
Program Officer
Merritt, William D
Project Start
Project End
Budget Start
Budget End
Support Year
Fiscal Year
Total Cost
Indirect Cost
Brigham and Women's Hospital
United States
Zip Code
Wan, Liling; Wen, Hong; Li, Yuanyuan et al. (2017) ENL links histone acetylation to oncogenic gene expression in acute myeloid leukaemia. Nature 543:265-269
Weisberg, Ellen L; Puissant, Alexandre; Stone, Richard et al. (2017) Characterization of midostaurin as a dual inhibitor of FLT3 and SYK and potentiation of FLT3 inhibition against FLT3-ITD-driven leukemia harboring activated SYK kinase. Oncotarget 8:52026-52044
Pallis, Monica; Burrows, Francis; Ryan, Jeremy et al. (2017) Complementary dynamic BH3 profiles predict co-operativity between the multi-kinase inhibitor TG02 and the BH3 mimetic ABT-199 in acute myeloid leukaemia cells. Oncotarget 8:16220-16232
Tamura, Akihiro; Hirai, Hideyo; Yokota, Asumi et al. (2017) C/EBP? is required for survival of Ly6C- monocytes. Blood 130:1809-1818
Toska, Eneda; Osmanbeyoglu, Hatice U; Castel, Pau et al. (2017) PI3K pathway regulates ER-dependent transcription in breast cancer through the epigenetic regulator KMT2D. Science 355:1324-1330
Shortt, Jake; Ott, Christopher J; Johnstone, Ricky W et al. (2017) A chemical probe toolbox for dissecting the cancer epigenome. Nat Rev Cancer 17:160-183
Gonzalez, David; Luyten, Annouck; Bartholdy, Boris et al. (2017) ZNF143 is an important regulator of the myeloid transcription factor C/EBP?. J Biol Chem :
Tothova, Zuzana; Krill-Burger, John M; Popova, Katerina D et al. (2017) Multiplex CRISPR/Cas9-Based Genome Editing in Human Hematopoietic Stem Cells Models Clonal Hematopoiesis and Myeloid Neoplasia. Cell Stem Cell 21:547-555.e8
Valerio, Daria G; Xu, Haiming; Chen, Chun-Wei et al. (2017) Histone Acetyltransferase Activity of MOF Is Required for MLL-AF9 Leukemogenesis. Cancer Res 77:1753-1762
Li, Hubo; Mar, Brenton G; Zhang, Huadi et al. (2017) The EMT regulator ZEB2 is a novel dependency of human and murine acute myeloid leukemia. Blood 129:497-508

Showing the most recent 10 out of 303 publications