The overall goal of this program is to develop more effective and less toxic therapies for the treatment of leukemia. Tremendous progress has been made in recent years in understanding the genetic and molecular basis of acute myeloid leukemia (AML), but progress towards improving outcomes for patients have been more limited. We will evaluate the efficacy and mechanistic basis for a set of novel therapeutic strategies for the treatment of AML. Specifically, we will investigate the modulation of apoptotic threshold in Project 1; inhibition of a specific ubiquitin ligase, CRL4-CRBN, by lenalidomide to induce cell cycle arrest, apoptosis, and differentiation; targeting lysine acetyltransferase activity to alter he function of transcription factors that are critical for AML biology in Project 3; and targeting key epigenetic regulators, BET bromodomain proteins and DOT1L, in Project 4. In addition to hypothesis-driven investigation of the biological mechanisms relevant to each therapeutic approach, we will investigate the therapeutic potential of these approaches using common assays and models. These therapeutic approaches will be investigated both individually and in combinations with existing therapies and each other. We will test molecules in vitro using dynamic BHS profiling, developed by Dr. Letai (Project 1) to examine the impact of candidate small molecules on apoptotic threshold. We will test molecules in vivo using both murine models developed by Dr. Bradner (Project 4) and primary human AML samples in xenograft models (Dr. Griffin, Core B). The most promising treatments will be brought forward to clinical trials in Core D. We will prospectively identify the subgroups most likely to respond by deep genetic and molecular characterization of AML samples used for pre-clinical and clinical studies. In aggregate, these studies will lead to the advancement of novel therapies for the treatment of AML, identification of genetic subgroups that are most likely to respond to novel treatments, and insights into the biological mechanisms of action for novel therapeutic strategies.

Public Health Relevance

The overall goal of this program is to develop more effective and less toxic therapies for the treatment of leukemia. We will explore the targeting of epigenetic regulators, ubiquitin ligases, lysine acetyltransferases, and modulators of apoptotic threshold. Following pre-clinical studies in common model systems, the most promising therapies will be tested in clinical trials with deep molecular characterization of patient samples.

Agency
National Institute of Health (NIH)
Institute
National Cancer Institute (NCI)
Type
Research Program Projects (P01)
Project #
5P01CA066996-20
Application #
9556978
Study Section
Special Emphasis Panel (ZCA1)
Program Officer
Merritt, William D
Project Start
1997-04-25
Project End
2019-08-31
Budget Start
2018-09-01
Budget End
2019-08-31
Support Year
20
Fiscal Year
2018
Total Cost
Indirect Cost
Name
Brigham and Women's Hospital
Department
Type
DUNS #
030811269
City
Boston
State
MA
Country
United States
Zip Code
Weinberg, Olga K; Gibson, Christopher J; Blonquist, Traci M et al. (2018) Association of mutations with morphological dysplasia in de novo acute myeloid leukemia without 2016 WHO Classification-defined cytogenetic abnormalities. Haematologica 103:626-633
Hoshii, Takayuki; Cifani, Paolo; Feng, Zhaohui et al. (2018) A Non-catalytic Function of SETD1A Regulates Cyclin K and the DNA Damage Response. Cell 172:1007-1021.e17
Gooptu, Mahasweta; Kim, Haesook T; Chen, Yi-Bin et al. (2018) Effect of Antihuman T Lymphocyte Globulin on Immune Recovery after Myeloablative Allogeneic Stem Cell Transplantation with Matched Unrelated Donors: Analysis of Immune Reconstitution in a Double-Blind Randomized Controlled Trial. Biol Blood Marrow Transplant 24:2216-2223
Gutierrez-Martinez, Paula; Hogdal, Leah; Nagai, Manavi et al. (2018) Diminished apoptotic priming and ATM signalling confer a survival advantage onto aged haematopoietic stem cells in response to DNA damage. Nat Cell Biol 20:413-421
Nabet, Behnam; Roberts, Justin M; Buckley, Dennis L et al. (2018) The dTAG system for immediate and target-specific protein degradation. Nat Chem Biol 14:431-441
Kleppe, Maria; Koche, Richard; Zou, Lihua et al. (2018) Dual Targeting of Oncogenic Activation and Inflammatory Signaling Increases Therapeutic Efficacy in Myeloproliferative Neoplasms. Cancer Cell 33:29-43.e7
List, Alan; Ebert, Benjamin L; Fenaux, Pierre (2018) A decade of progress in myelodysplastic syndrome with chromosome 5q deletion. Leukemia 32:1493-1499
Ebert, Benjamin L; Krönke, Jan (2018) Inhibition of Casein Kinase 1 Alpha in Acute Myeloid Leukemia. N Engl J Med 379:1873-1874
Sellar, Rob S; Jaiswal, Siddhartha; Ebert, Benjamin L (2018) Predicting progression to AML. Nat Med 24:904-906
Hshieh, Tammy T; Jung, Wooram F; Grande, Laura J et al. (2018) Prevalence of Cognitive Impairment and Association With Survival Among Older Patients With Hematologic Cancers. JAMA Oncol 4:686-693

Showing the most recent 10 out of 376 publications