The goal of this project is to maximize genetic information about glioblastoma (GBM) tumors by RNA analysis of tumor-derived microvesicles (MVs) in serum and to develop assays for these genetic parameters that can be applied to clinical samples.
Aim 1 will focus on improving isolation methods for tumor MVs from serum. This will involve defining expression of antigenic markers for GBM cells and MVs derived from them, as compared to MVs released from normal cells into the serum. GBM-selective antibodies will be used to enrich for tumor-derived MVs in serum by antibody-mediated microfluidic capture. This enrichment should increase our ability to assay tumor mRNA mutations and levels.
Aim 2 will characterize biomarker RNA content of longitudinal serum MVs from mice bearing GBM tumors and from pre-operative serum/tumor sets from 100 GBM patients and serum from 100 controls. Assays will be developed to monitor a set of key mRNAs known to be mutated or have altered levels in subtypes of GBM tumors. Assays will include TaqMan qRT-PCR analysis and BEAMing for detection and quantitation.
In Aim 3 we will screen for levels of specific RNAs and mutations in serum MVs obtained longitudinally in GBM mice undergoing different treatment modalities and in clinical phase l/ll trials of human GBM patients. Interactions in this P01 are tightly interwoven among projects and cores. We will provide expertise and assay development for analysis of RNA in MVs from oncolytic virus infected tumors and serum with Project 1, and share parallel mouse and human serum samples, as well as antibodies with Project 2 for designation of antigens enriched on GBM cells and comparison of detection thresholds with DMR analysis. Cores B and C will supply serum and tumor samples from human GBM patients/controls and GBM mouse models/controls, respectively. Core B will provide biostatistical oversight for biomarker assay validation, sensitivity and specificity of biomarkers, power calculations and correlations between biomarkers and tumor status. These studies represent a novel approach to biomarkers which can report on the genetic status of brain tumors using blood samples.

Public Health Relevance

These studies address the potential of RNA in serum microvesicles as biomarkers to evaluate the genetic status of tumors and their response to therapy. Tumor-denved microvesicle RNA biomarkers should have wide applications in many forms of cancer and assist in informing clinicians of appropriate therapeutic interventions for individual patients based on dynamic changes in the genetic constitution of tumors.

National Institute of Health (NIH)
National Cancer Institute (NCI)
Research Program Projects (P01)
Project #
Application #
Study Section
Special Emphasis Panel (ZCA1-GRB-P)
Project Start
Project End
Budget Start
Budget End
Support Year
Fiscal Year
Total Cost
Indirect Cost
Massachusetts General Hospital
United States
Zip Code
Rooj, Arun K; Ricklefs, Franz; Mineo, Marco et al. (2017) MicroRNA-Mediated Dynamic Bidirectional Shift between the Subclasses of Glioblastoma Stem-like Cells. Cell Rep 19:2026-2032
Choudhury, Sourav R; Hudry, Eloise; Maguire, Casey A et al. (2017) Viral vectors for therapy of neurologic diseases. Neuropharmacology 120:63-80
Maas, Sybren L N; Breakefield, Xandra O; Weaver, Alissa M (2017) Extracellular Vesicles: Unique Intercellular Delivery Vehicles. Trends Cell Biol 27:172-188
Speranza, Maria-Carmela; Passaro, Carmela; Ricklefs, Franz et al. (2017) Preclinical investigation of gene-mediated cytotoxic immunotherapy and checkpoint blockade in glioblastoma. Neuro Oncol :
Min, Changwook; Park, Jongmin; Mun, Jae Kyoung et al. (2017) Integrated microHall magnetometer to measure the magnetic properties of nanoparticles. Lab Chip 17:4000-4007
Yeo, Alan T; Charest, Alain (2017) Immune Checkpoint Blockade Biology in Mouse Models of Glioblastoma. J Cell Biochem 118:2516-2527
Im, Hyungsoon; Lee, Kyungheon; Weissleder, Ralph et al. (2017) Novel nanosensing technologies for exosome detection and profiling. Lab Chip 17:2892-2898
Godlewski, Jakub; Ferrer-Luna, Ruben; Rooj, Arun K et al. (2017) MicroRNA Signatures and Molecular Subtypes of Glioblastoma: The Role of Extracellular Transfer. Stem Cell Reports 8:1497-1505
Wei, Zhiyun; Batagov, Arsen O; Schinelli, Sergio et al. (2017) Coding and noncoding landscape of extracellular RNA released by human glioma stem cells. Nat Commun 8:1145
Zappulli, Valentina; Friis, Kristina Pagh; Fitzpatrick, Zachary et al. (2016) Extracellular vesicles and intercellular communication within the nervous system. J Clin Invest 126:1198-207

Showing the most recent 10 out of 208 publications