Camptothecin (CPT) is a potent inhibitor of cell proliferation, and camptothecin derivatives, such as irinotecan and topotecan, have proven valuable in treatment of solid tumors. The goal of this project to develop a clearer mechanistic and molecular understanding of repair of CPT-induced DNA damage, and to apply this knowledge to developing a rapid assay for CPT-sensitivity based on repair capability. We propose three specific aims to that end. (1) We will determine the molecular mechanism by which MRE11 contributes to repair of CPT-induced DNA damage. (2) We will elucidate the roles of RecQ family helicases and G4 DNA in CPT sensitivity. (3) We will test the utility of y-sH2AX as a biomarker for chemotherapeutic sensitivity and DNA repair. The results of the proposed research will provide an important step toward improved treatment of cancer based on stratification of tumor response to CPT.

Public Health Relevance

By applying basic understanding of DNA repair mechanisms to cancer therapy, the proposed research will define an opportunity for personalized medicine which has not heretofore been exploited, and provide a guide for stratification of tumors based on response to chemotherapy.

Agency
National Institute of Health (NIH)
Institute
National Cancer Institute (NCI)
Type
Research Program Projects (P01)
Project #
5P01CA077852-15
Application #
8494584
Study Section
Special Emphasis Panel (ZCA1-GRB-S)
Project Start
Project End
Budget Start
2013-07-01
Budget End
2014-06-30
Support Year
15
Fiscal Year
2013
Total Cost
$253,608
Indirect Cost
$71,026
Name
University of Washington
Department
Type
DUNS #
605799469
City
Seattle
State
WA
Country
United States
Zip Code
98195
Reid-Bayliss, Kate S; Loeb, Lawrence A (2017) Accurate RNA consensus sequencing for high-fidelity detection of transcriptional mutagenesis-induced epimutations. Proc Natl Acad Sci U S A 114:9415-9420
Kamath-Loeb, Ashwini S; Zavala-van Rankin, Diego G; Flores-Morales, Jeny et al. (2017) Homozygosity for the WRN Helicase-Inactivating Variant, R834C, does not confer a Werner syndrome clinical phenotype. Sci Rep 7:44081
Oshima, Junko; Sidorova, Julia M; Monnat Jr, Raymond J (2017) Werner syndrome: Clinical features, pathogenesis and potential therapeutic interventions. Ageing Res Rev 33:105-114
Yuan, Zixu; Baker, Kelsey; Redman, Mary W et al. (2017) Dynamic plasma microRNAs are biomarkers for prognosis and early detection of recurrence in colorectal cancer. Br J Cancer 117:1202-1210
Poole, William; Leinonen, Kalle; Shmulevich, Ilya et al. (2017) Multiscale mutation clustering algorithm identifies pan-cancer mutational clusters associated with pathway-level changes in gene expression. PLoS Comput Biol 13:e1005347
Fu, Wenqing; Ligabue, Alessio; Rogers, Kai J et al. (2017) Human RECQ Helicase Pathogenic Variants, Population Variation and ""Missing"" Diseases. Hum Mutat 38:193-203
Beckman, Robert A; Loeb, Lawrence A (2017) Evolutionary dynamics and significance of multiple subclonal mutations in cancer. DNA Repair (Amst) 56:7-15
Fox, Edward J; Salk, Jesse J; Loeb, Lawrence A (2016) Exploring the implications of distinct mutational signatures and mutation rates in aging and cancer. Genome Med 8:30
Tokita, Mari; Kennedy, Scott R; Risques, Rosa Ana et al. (2016) Werner syndrome through the lens of tissue and tumour genomics. Sci Rep 6:32038
Reid-Bayliss, Kate S; Arron, Sarah T; Loeb, Lawrence A et al. (2016) Why Cockayne syndrome patients do not get cancer despite their DNA repair deficiency. Proc Natl Acad Sci U S A 113:10151-6

Showing the most recent 10 out of 128 publications