Autologous stem cell transplantation for multiple myeloma (MM) results in effective cytoreduction but patients subsequently relapse. A promising area of investigation is the development of cancer vaccines that educate host immunity to selectively target and eliminate MM cells and can be used to eradicate residual disease following autologous stem cell transplantation. We have developed a cancer vaccine in which dendritic cells (DC) are fused to autologous tumor cells resulting in the presentation of multiple tumor antigens with the capacity to elicit a broad anti-tumor response. In a clinical trial of patients with advanced MM, vaccination with autologous DC/MM fusions induced anti-tumor immunity in a majority of patients, and disease stabilization ranging from 10 weeks to 36 months. In an ongoing trial of MM patients undergoing DC/tumor fusion vaccination in conjunction with stem cell transplantation, we have demonstrated a marked expansion of myeloma reactive T cells with the concomitant eradication of post-transplant residual disease following vaccination. To overcome the intrinsic immunosuppressive environment and regulatory T ceils that limit vaccine response, we are developing strategies to incorporate adoptive immunotherapy with MM reactive T cell clones. One approach is the use of vaccination prior to stem cell collection such that educated lymphocytes are infused at the time of transplant and further expanded in vivo by post-transplant vaccination. Alternatively, adoptive immunotherapy may be further optimized by ex-vivo generation of MM specific T cells with an activated phenotype. We have found that ligation of CD3/CD28 following ex vivo stimulation with DC/MM fusion vaccine results in the dramatic expansion of activated tumor reactive T cells while minimizing the presence of regulatory T cells. Our hypothesis is that combining transplant mediated cytoreduction and regulatory T cell depletion with the infusion of activated tumor reactive lymphocytes and boosting vaccination with DC/MM fusions offers the ideal platfomn for optimized cellular immunotherapy in MM. To address this hypothesis the Specific Aims are: 1) To evaluate toxicity, cellular and humoral antitumor immunity, and clinical response of a combined DC/MM vaccination and adoptive transfer of in vivo primed T cells;2) To optimize strategies for the ex vivo expansion of myeloma specific T cells using sequential stimulation with DC/MM fusions and anti-CD3/CD28 ex vivo;and 3) To define the toxicity, immunologic response and clinical effect of ex vivo generated and expanded myeloma specific T cells administered in conjunction with pre and post-transplant vaccination with DC/MM fusions.

Public Health Relevance

Multiple myeloma is an incurable malignancy. The proposed work involves the further development of a vaccine for the treatment of multiple myeloma. These studies have the potential to advance therapy for patients with this disease.

Agency
National Institute of Health (NIH)
Institute
National Cancer Institute (NCI)
Type
Research Program Projects (P01)
Project #
5P01CA078378-14
Application #
8462447
Study Section
Special Emphasis Panel (ZCA1-RPRB-J)
Project Start
Project End
Budget Start
2013-04-01
Budget End
2014-03-31
Support Year
14
Fiscal Year
2013
Total Cost
$356,263
Indirect Cost
$115,542
Name
Dana-Farber Cancer Institute
Department
Type
DUNS #
076580745
City
Boston
State
MA
Country
United States
Zip Code
02215
Das, D Sharma; Ray, A; Das, A et al. (2016) A novel hypoxia-selective epigenetic agent RRx-001 triggers apoptosis and overcomes drug resistance in multiple myeloma cells. Leukemia 30:2187-2197
Ray, Arghya; Ravillah, Durgadevi; Das, Deepika S et al. (2016) A novel alkylating agent Melflufen induces irreversible DNA damage and cytotoxicity in multiple myeloma cells. Br J Haematol 174:397-409
An, Gang; Acharya, Chirag; Feng, Xiaoyan et al. (2016) Osteoclasts promote immune suppressive microenvironment in multiple myeloma: therapeutic implication. Blood 128:1590-603
Tagde, Ashujit; Rajabi, Hasan; Bouillez, Audrey et al. (2016) MUC1-C drives MYC in multiple myeloma. Blood 127:2587-97
Jiang, H; Acharya, C; An, G et al. (2016) SAR650984 directly induces multiple myeloma cell death via lysosomal-associated and apoptotic pathways, which is further enhanced by pomalidomide. Leukemia 30:399-408
Gullà, Annamaria; Di Martino, Maria Teresa; Gallo Cantafio, Maria Eugenia et al. (2016) A 13 mer LNA-i-miR-221 Inhibitor Restores Drug Sensitivity in Melphalan-Refractory Multiple Myeloma Cells. Clin Cancer Res 22:1222-33
Tai, Yu-Tzu; Acharya, Chirag; An, Gang et al. (2016) APRIL and BCMA promote human multiple myeloma growth and immunosuppression in the bone marrow microenvironment. Blood 127:3225-36
Bommarito, Davide; Martin, Allison; Forcade, Edouard et al. (2016) Enhancement of tumor cell susceptibility to natural killer cell activity through inhibition of the PI3K signaling pathway. Cancer Immunol Immunother 65:355-66
Ohguchi, Hiroto; Hideshima, Teru; Bhasin, Manoj K et al. (2016) The KDM3A-KLF2-IRF4 axis maintains myeloma cell survival. Nat Commun 7:10258
Bae, J; Prabhala, R; Voskertchian, A et al. (2015) A multiepitope of XBP1, CD138 and CS1 peptides induces myeloma-specific cytotoxic T lymphocytes in T cells of smoldering myeloma patients. Leukemia 29:218-29

Showing the most recent 10 out of 245 publications